Preview

Medical Genetics

Advanced search

The interpretation of somatic genetic variants identified with high-throughput sequencing of DNA from paediatric solid tumors

https://doi.org/10.25557/2073-7998.2021.03.3-25

Abstract

Active clinical implementation of high-throughput DNA sequencing requires a common approach to the interpretation of detected genetic variants, including variants with somatic status. In 2017, the United States Association of Molecular Pathology (AMP), the American College of Medical Genetics and Genomics (ACMG), the American Society of Clinical Oncology (ASCO), and the College of American Pathologists (CAP) published the guidelines for interpreting and reporting the somatic genetic variants in cancer identified using high-throughput sequencing analysis. This review focuses on the specific application of the AMP/ACMG/ASCO/CAP guidelines in the field of genetic research on paediatric solid tumors. In particular, the review provides the criteria for classification of somatic genetic variants, discusses the problems of evaluating the clinical significance of genetic findings in paediatric tumors, and provides examples of classification of genetic variants specific for certain types of childhood solid malignancies.

About the Authors

M. A. Spektor
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
Russian Federation


L. A. Yasko
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia
Russian Federation


A. E. Druy
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russia; Research Institute of Medical Cell Technologies
Russian Federation


References

1. Surrey L.F., MacFarland S.P., Chang F., Cao K., Rathi K.S., Akgumus G.T., et al. Clinical utility of custom-designed NGS panel testing in pediatric tumors. Genome Med. 2019 May 28;11(1):32.

2. Morganti S., Tarantino P., Ferraro E., D’Amico P., Duso B.A., Curigliano G. Next Generation Sequencing (NGS): A Revolutionary Technology in Pharmacogenomics and Personalized Medicine in Cancer. Adv Exp Med Biol. 2019;1168:9-30.

3. Morash M., Mitchell H., Beltran H., Elemento O., Pathak J. The Role of Next-Generation Sequencing in Precision Medicine: A Review of Outcomes in Oncology. J Pers Med. 2018 Sep 17;8(3).

4. Richards S., Aziz N., Bale S., Bick D., Das S. Gastier-Foster J., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med Off J Am Coll Med Genet. 2015 May; 17(5):405-24.

5. Rehm H.L., Bale S.J., Bayrak-Toydemir P., Berg J.S., Brown K.K., Deignan J.L., et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med Off J Am Coll Med Genet. 2013 Sep;15(9):733-47.

6. Aziz N., Zhao Q., Bry L., Driscoll D.K., Funke B., Gibson J.S., et al. College of American Pathologists’ laboratory standards for next-generation sequencing clinical tests. Arch Pathol Lab Med. 2015 Apr;139(4):481-93.

7. Matthijs G., Souche E., Alders M., Corveleyn A., Eck S., Feenstra I., et al. Guidelines for diagnostic next-generation sequencing. Eur J Hum Genet EJHG. 2016 Oct;24(10):1515.

8. Use of standards in FDA regulatory Oversight of Next Generation Sequencing-Based In Vitro Diagnostics used for diagnosing Germline Diseases (Draft Guidance) [Internet]. SciPol.org. 2016 [cited 2020 May 20]. Available from: https://scipol.duke.edu/track/use-standards-fda-regulatory-oversight-next-generation-sequencing-based-vitro-diagnostics-used

9. Рыжкова О., Кардымон О., Прохорчук Е., Коновалов Ф., Масленников А., Степанов В., и др. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS)(редакция 2018, версия 2). Медицинская Генетика. 2019;18(2):3-23.

10. Li M.M., Datto M., Duncavage E.J., Kulkarni S., Lindeman N.I., Roy S., et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn JMD. 2017 Jan;19(1):4-23.

11. Abbas T., Keaton M.A., Dutta A. Genomic instability in cancer. Cold Spring Harb Perspect Biol. 2013 Mar 1;5(3):a012914.

12. Lee J.W., Kim N.K.D., Lee S.H., Cho H.W. Ma Y., Ju H.Y., et al. Discovery of actionable genetic alterations with targeted panel sequencing in children with relapsed or refractory solid tumors. PloS One. 2019;14(11):e0224227.

13. Evidence Repository - Clinical Genome Resources [Internet]. [cited 2020 May 27]. Available from: https://erepo.clinicalgenome.org/evrepo/ui/interpretation/b172bcbe-5cff-4ba5-9ba2-482b4e1e357d

14. Froyen G., Le Mercier M., Lierman E., Vandepoele K., Nollet F., Boone E., et al. Standardization of Somatic Variant Classifications in Solid and Haematological Tumours by a Two-Level Approach of Biological and Clinical Classes: An Initiative of the Belgian ComPerMed Expert Panel. Cancers. 2019 Dec 16;11(12).

15. Downing J.R., Wilson R.K., Zhang J., Mardis E.R., Pui C.-H., Ding L., et al. The Pediatric Cancer Genome Project. Nat Genet. 2012 May 29;44(6):619-22.

16. Gröbner S.N., Worst B.C., Weischenfeldt J., Buchhalter I., Kleinheinz K., Rudneva V.A., et al. The landscape of genomic alterations across childhood cancers. Nature. 2018 Mar 15;555(7696):321-7.

17. Ma X., Liu Y., Liu Y., Alexandrov L.B., Edmonson M.N., Gawad C., et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature. 2018 Mar 15;555(7696):371-6.

18. Morozova O., Newton Y., Cline M., Zhu J., Learned K., Stuart J., et al. Abstract LB-212: Treehouse Childhood Cancer Project: a resource for sharing and multiple cohort analysis of pediatric cancer genomics data. Cancer Res. 2015;75(15 Supplement):LB-212.

19. Jäger N., Jones D.T., Kool M., Zichner T., Hutter B., Sultan M., et al. ICGC PedBrain - dissecting the genomic complexity underlying medulloblastoma using whole-genome sequencing. BMC Proc. 2012 Oct 1;6(6):P43.

20. Jeanquartier F., Jean-Quartier C., Holzinger A. Use case driven evaluation of open databases for pediatric cancer research. BioData Min. 2019;12:2.

21. Li X., Warner.JL. A Review of Precision Oncology Knowledgebases for Determining the Clinical Actionability of Genetic Variants. Front Cell Dev Biol. 2020;8:48.

22. Wagner A.H., Walsh B., Mayfield G., Tamborero D., Sonkin D., Krysiak K., et al. A harmonized meta-knowledgebase of clinical interpretations of somatic genomic variants in cancer. Nat Genet. 2020 Apr;52(4):448-57.

23. Wain H.M., Bruford E.A., Lovering R.C., Lush M.J., Wright M.W., Povey S. Guidelines for human gene nomenclature. Genomics. 2002 Apr;79(4):464-70.

24. Jones D.T.W., Banito A., Grünewald T.G.P., Haber M., Jäger N., Kool M., et al. Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nat Rev Cancer. 2019 Aug;19(8):420-38.

25. Kohashi K., Oda Y. Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci. 2017 Apr;108(4):547-52.

26. Eaton K.W., Tooke L.S., Wainwright L.M., Judkins A.R., Biegel J.A. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer. 2011 Jan;56(1):7-15.

27. Phi J.H., Sun C.-H., Lee S.-H., Lee S., Park I., Choi S.A., et al. NPM1 as a potential therapeutic target for atypical teratoid/rhabdoid tumors. BMC Cancer. 2019;19(1):848.

28. Erkek S., Johann P.D., Finetti M.A., Drosos Y., Chou H.-C., Zapatka M. et al. Comprehensive Analysis of Chromatin States in Atypical Teratoid/Rhabdoid Tumor Identifies Diverging Roles for SWI/SNF and Polycomb in Gene Regulation. Cancer Cell. 2019 14;35(1):95-110.e8.

29. Frühwald M.C., Biegel J.A., Bourdeaut F., Roberts C.W.M., Chi S.N. Atypical teratoid/rhabdoid tumors-current concepts, advances in biology, and potential future therapies. Neuro-Oncol. 2016 Jun;18(6):764-78.

30. Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol (Berl). 2016;131(6):803-20.

31. Della Corte C.M., Viscardi G., Di Liello R., Fasano M., Martinelli E., Troiani T., et al. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer. 2018 Feb 19;17(1):30.

32. Bellini A., Bernard V., Leroy Q., Frio T.R., Pierron G., Combaret V., et al. Deep Sequencing Reveals Occurrence of Subclonal ALK Mutations in Neuroblastoma at Diagnosis. Clin Cancer Res. 2015 Nov 1;21(21):4913-21.

33. Trigg R.M., Turner S.D. ALK in Neuroblastoma: Biological and Therapeutic Implications. Cancers. 2018 Apr 10;10(4).

34. Bresler S.C., Weiser D.A., Huwe P.J., Park J.H., Krytska K., Ryles H., et al. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell. 2014 Nov 10;26(5):682-94.

35. Ackermann S., Cartolano M., Hero B., Welte A., Kahlert Y., Roderwieser A., et al. A mechanistic classification of clinical phenotypes in neuroblastoma. Science. 2018 Dec 7;362(6419):1165-70.

36. Mondal G., Stevers M., Goode B., Ashworth A., Solomon D.A. A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in cohesin-mutant cancers. Nat Commun. 2019;10(1):1686.

37. A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in cohesin-mutant cancers | Nature Communications [Internet]. [cited 2020 May 28]. Available from: https://www.nature.com/articles/s41467-019-09659-z

38. Romero-Pérez L., Surdez D., Brunet E. Delattre O., Grünewald T.G.P. STAG Mutations in Cancer. Trends Cancer. 2019 Aug;5(8):506-20.

39. OMIM Clinical Synopsis - #301022 - MULLEGAMA-KLEIN-MARTINEZ SYNDROME; MKMS [Internet]. [cited 2020 May 21]. Available from: https://omim.org/clinicalSynopsis/301022

40. Gargallo P., Juan A., Yáñez Y., Dolz S., Segura V., Castel V., et al. Precision medicine in Ewing sarcoma: a translational point of view. Clin Transl Oncol Off Publ Fed Span Oncol Soc Natl Cancer Inst Mex. 2020 Feb 5;

41. Brohl A.S., Solomon D.A., Chang W., Wang J., Song Y., Sindiri S., et al. The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014 Jul;10(7):e1004475.

42. Crompton B.D., Stewart C., Taylor-Weiner A., Alexe G., Kurek K.C., Calicchio M.L., et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov. 2014 Nov;4(11):1326-41.

43. Bahrami A, Wu J, Dyer MA, Delattre O, Pappo AS. Loss of STAG2 expression and prognosis in Ewing sarcoma family of tumors. J Clin Oncol. 2015 May 20;33(15_suppl):10024-10024.

44. Gargallo P., Font de Mora J., Berlanga P., Calabria I., Llavador M., Pedrola L., et al. Precision medicine in relapsed or refractory pediatric solid tumors: a collaborative Spanish initiative. Transl Med Commun. 2019;4(1):10.

45. Østrup O., Nysom K., Scheie D., Schmidt A.Y., Mathiasen R., Hjalgrim L.L., et al. Importance of Comprehensive Molecular Profiling for Clinical Outcome in Children With Recurrent Cancer. Front Pediatr. 2018;6:114.

46. Khater F., Vairy S., Langlois S., Dumoucel S., Sontag T., St-Onge P., et al. Molecular Profiling of Hard-to-Treat Childhood and Adolescent Cancers. JAMA Netw Open. 2019 Apr 5;2(4):e192906.

47. Harris M.H., DuBois S.G., Glade Bender J.L., Kim A., Crompton B.D., Parker E., et al. Multicenter Feasibility Study of Tumor Molecular Profiling to Inform Therapeutic Decisions in Advanced Pediatric Solid Tumors: The Individualized Cancer Therapy (iCat) Study. JAMA Oncol. 2016 May 1;2(5):608-15.

48. Worst B.C., van Tilburg C.M., Balasubramanian G.P., Fiesel P., Witt R., Freitag A., et al. Next-generation personalised medicine for high-risk paediatric cancer patients - The INFORM pilot study. Eur J Cancer Oxf Engl 1990. 2016 Sep;65:91-101.

49. Pincez T., Clément N., Lapouble E., Pierron G., Kamal M., Bieche I., et al. Feasibility and clinical integration of molecular profiling for target identification in pediatric solid tumors. Pediatr Blood Cancer. 2017 Jun;64(6).

50. Harttrampf A.C., Lacroix L., Deloger M., Deschamps F., Puget S., Auger N., et al. Molecular Screening for Cancer Treatment Optimization (MOSCATO-01) in Pediatric Patients: A Single-Institutional Prospective Molecular Stratification Trial. Clin Cancer Res Off J Am Assoc Cancer Res. 2017 Oct 15;23(20):6101-12.

51. Mody R.J., Wu Y.-M., Lonigro R.J., Cao X., Roychowdhury S., Vats P., et al. Integrative Clinical Sequencing in the Management of Refractory or Relapsed Cancer in Youth. JAMA. 2015 Sep 1;314(9):913-25.

52. Oberg J.A., Glade Bender J.L., Sulis M.L., Pendrick D., Sireci A.N., Hsiao S.J., et al. Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med. 2016 Dec 23;8(1):133.

53. Cole B.L., Lockwood C.M., Stasi S., Stevens J., Lee A., Ojemann J.G., et al. Year 1 in the Molecular Era of Pediatric Brain Tumor Diagnosis: Application of Universal Clinical Targeted Sequencing in an Unselected Cohort of Children. JCO Precis Oncol. 2018;(2):1-13.

54. Ramkissoon S.H., Bandopadhayay P., Hwang J., Ramkissoon L.A., Greenwald N.F., Schumacher S.E., et al. Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors. Neuro-Oncol. 2017 Jul 1;19(7):986-96.

55. Leichsenring J., Horak P., Kreutzfeldt S., Heining C., Christopoulos P., Volckmar A.-L., et al. Variant classification in precision oncology. Int J Cancer. 2019 Dec 1;145(11):2996-3010.

56. Vo K.T., Parsons D.W., Seibel N.L. Precision Medicine in Pediatric Oncology. Surg Oncol Clin N Am. 2020 Jan;29(1):63-72.

57. Forrest S.J., Geoerger B., Janeway K.A. Precision medicine in pediatric oncology. Curr Opin Pediatr. 2018 Feb;30(1):17-24.

58. Mody R.J., Prensner J.R., Everett J., Parsons D.W., Chinnaiyan A.M. Precision medicine in pediatric oncology: Lessons learned and next steps. Pediatr Blood Cancer. 2017 Mar;64(3).

59. Rusch M., Nakitandwe J., Shurtleff S., Newman S., Zhang Z., Edmonson M.N., et al. Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nat Commun. 2018 Sep 27;9(1):3962.

60. Parsons D.W., Roy A., Yang Y., Wang T., Scollon S., Bergstrom K., et al. Diagnostic Yield of Clinical Tumor and Germline Whole-Exome Sequencing for Children With Solid Tumors. JAMA Oncol. 2016 May 1;2(5):616-24.

61. George S.L., Izquierdo E., Campbell J., Koutroumanidou E., Proszek P., Jamal S., et al. A tailored molecular profiling programme for children with cancer to identify clinically actionable genetic alterations. Eur J Cancer Oxf Engl 1990. 2019 Nov;121:224-35.

62. Chakravarty D., Gao J., Phillips S.M., Kundra R., Zhang H., Wang J., et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol. 2017 Jul;2017.


Review

For citations:


Spektor M.A., Yasko L.A., Druy A.E. The interpretation of somatic genetic variants identified with high-throughput sequencing of DNA from paediatric solid tumors. Medical Genetics. 2021;20(3):3-25. (In Russ.) https://doi.org/10.25557/2073-7998.2021.03.3-25

Views: 798


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)