Неоцентромеры
Аннотация
Об авторе
Н. В. ШиловаРоссия
Список литературы
1. Choo K. The centromere. Oxford University Press, New York, 1997; 304 pp.
2. Рубцов НБ Хромосомы человека. Наследственные болезни: Национальное руководство. Под ред. Бочкова Н.П., Гинтера Е.К., Пузырева В.П. ГЭОТАР-Медиа. 2012. Глава 2. С. 33-68.
3. Voullaire L, Slater H, Petrovic V, Choo K. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: Activation of a latent centromere? Am J Hum Genet. 1993; 52(6):1153-1163.
4. Amor D, Choo K. Neocentromeres: role in human disease, evolution and centromere study. Am J Hum Genet. 2002; 71(4):695-714.
5. Cardone M, Alonso A, Pazienza M et al. Independent centromere formation in a capricious, gene-free domain of chromosome13q21 in Old World monkeys and pigs. Genome Biol. 2006; 7(10):R91.
6. Olzak AM, van Essen D, Pereira AJ et al. Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nature Cell Biology. 2011; 13(7):799-808.
7. Craig J, Earle E, Canham P et al. Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins and distinct chromosomal distribution patterns. Hum Mol Genet. 2003a;12(23):3109-3121.
8. Alonso A, Fritz B, Hasson D et al. Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol. 2007;8(7):R148.
9. Alonso A, Hasson D, Cheung F, Warburton P. A paucity of heterochromatin at functional human neocentromeres. Epigenetics chromatin, 2010; 3(1):6.doi:10.1186/1756-8935-3-6.
10. Steiner N, Clarke L. A novel epigenetic effect can alter centromere formation in fussion yeast. Cell. 1994;79(5):865-874.
11. Maggert K, Karpen G. Acquisition and metastability of centromere identity and function: sequence analysis of a human neocentromere. Genome Res. 2000; 10:725-728.
12. Black B, Bassett E. The histone variant CENP-A and centromere specification. Curr Opin Cell Biol. 2008;20(1):91-100.
13. Van Hooser A, Ouspenski I, Gregson H et al. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci. 2001;114(Pt19):3529-3542.
14. Heun P, Erhardt S, Blower M et al. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell. 2006;10(3):303-315.
15. Sullivan B, Willard H.F. Stable dicentric X chromosomes with two functional centromeres. Nat Genet. 1998;20(3):227-228.
16. Nakano M, Okamoto Y, Ohzeki J, Masumoto H. Epigenetic assembly of centromeric chromatin at ectopic alpha-satellite sites on human chromosomes. J Cell Sci. 2003;116(Pt19):4021-4034.
17. Craig J, Wong L, Lo A et al. Centromeric chromatin pliability and memory at a human neocentromere. EMBO J. 2003b;22(10):2495-2504.
18. Wong N, Wong L, Quach J et al. Permissive transcriptional activity at the centromere through pockets of DNA hypomethylation. PLoS Genet. 2006; 2(2):e17.
19. Sirvent N, Forus A, Lescaut W et al. Characterization of centromere alterations in liposarcomas. Genes Chromosomes Cancer. 2000; 29(2):117-129.
20. Italiano A, Attias R, Aurias A et al. Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23-p24 amplification including JAK2 and JMJD2C. Cancer Genet Cytogenet. 2006;167(2):122-130.
21. Abeliovich D, Yehuda O, Ben-Neriah S et al. dup(10q) lacking alpha-satellite DNA in bone marrow cells of a patient with acute myeloid leukemia. Cancer Genet Cytogenet. 1996;89(1):1-6.
22. Marshall O, Chueh C, Wong L, Choo K. Neocentromeres: new insights into centromere structure, disease development and karyotype evolution. Am J Hum Genet. 2008;82(2):261-282.
23. Ventura M, Mudge J, PalumboV et al. Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res. 2003;13(9):2059-2068.
24. Voullaire L, Saffery R, Earle E et al. Mosaic inv dup(8p) marker chromosome with stable neocentromere suggests neocentromerization is a post-zygotic event. Am J Med Genet. 2001; 102(1):86-94.
25. Gu W, Zhang F, Lupski J. Mechanisms for human genomic rearrangements. PathoGenetics. 2008 Nov 3; 1(1):4.
26. Murmann A, Conrad D, Mashek H. et al. Inverted duplication on acentric markers: mechanism of formation. Hum Mol Genet. 2009;18(12):2241-2256.
27. Chuang L, Wakui K, Sue W et al. Interstitial deletion 11(p11.12p11.2) and analphoid marker formation results in inherited Potocki-Shaffer syndrome. Am J Med Genet A. 2005;133(2):180-183.
28. Knegt A, Li S, Engelen J et al. Prenatal diagnosis of a karyotypically normal pregnancy in a mother with a supernumerary neocentric 13q21 ->13q22 chromosome and balancing reciprocal deletion. Prenat Diagn. 2003;23(3):215-220.
29. Dalpra L, Giardino D, Finelli P et al. Cytogenetic and molecular evaluation of 241small supernumerary marker chromosomes: Cooperative study of 19 Italian laboratories. Genet Med. 2005;7(9):620-625.
30. Liehr T, Weise A. Frequency of small supernumerary marker chromosomes in prenatal, newborn, developmentally retarded and infertility diagnostics. Int. J. Mol. Med. 2007; 19:719-731.
31. Liehr T. Small supernumerary marker chromosomes (sSMC). http://www.fish.uniklinikum-jena.de/sSMC.html (accessed on December 12, 2011)
32. Klein E, Rocci M, Jvens-Raeder A et al. Five novel locations of neocentromeres in human: 18q22.1, Xq27.1~27.2, Acro p12, and heterochromatin of unknown origin. Cytogenet Genome Res. 2012;136(3):163-166.
33. Liehr T, Kosyakova N, Weise A et al. First case of neocentromere formation in an otherwise normal chromosome 7. Cytogenet Genome Res. 2010;128(4):189-191.
34. Warburton P. Chromosomal dynamics of human neocentromere formation. Chromosome Research. 2004;12(6):617-626.
35. Warburton P, Haaf T, Gosden J et al. Characterization of a chromosome-specific chimpanzee alpha satellite subset: evolutionary relationship to subsets on human chromosomes. Genomics. 1996;33(2):220-228.
36. Charlesworth D, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371 (6494):215-220
37. Rocchi M, Archidiacano N, Schempp W et al. Centromere repositioning in mammals. Heredity (Edinb). 2012;108(1):59-67.
38. Capossi O, Purgato S, D’abbabbo P et al. Evolutionary descent a human neocentromere: a jump back to 17 million years ago. Genome Res. 2009;19(5):778-782.
39. VenturaV, Antonacci F, Cardone MF et al. Evolutionary formation a new centromeres in macaque. Science. 2007;316(5822):243-246.
40. Amor D, Bentley K, Ryan J et al. Human centromere reposition “in progress”. PNAS. 2004;101(17):6542-6547.
41. Ventura M, Weigl S, Carbone L et al. Recurrent sites for new centromere seeding. Genome Res. 2004;14(9):1696-1703.
42. Burrack LS, Berman J. Neocentromeres and epigenetically inherited features of centromeres. Chromosome Res. 2012; 20(5):607-619.
43. Scott KC, Sullivan BA. Neocentromeres: a place for everything and everything in its place. Trands in Genetics. 2014; 30(2):66-74/.
44. Saffery R, Choo K. Strategies for engineering human chromosomes with therapeutic potential. J Gene Med. 2002;4(1):5-13.
Рецензия
Для цитирования:
Шилова Н.В. Неоцентромеры. Медицинская генетика. 2016;15(11):3-8.
For citation:
Shilova N.V. Neocentromeres. Medical Genetics. 2016;15(11):3-8. (In Russ.)