Polymorphic variant rs4430796 at HNF1B gene: sex-specific, BMI-dependent associations with parameters of glucose metabolism, redox homeostasis and risk of type 2 diabetes
https://doi.org/10.25557/2073-7998.2021.01.25-36
Abstract
About the Authors
Iu. E. AzarovaRussian Federation
E. Yu. Klyosova
Russian Federation
A. V. Polonikov
Russian Federation
References
1. Аметов А.С. Сахарный диабет 2 типа: проблемы и решение. 2-е издание. М.: ГЭОТАР-Медиа, 2013. 1032 с.
2. Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes research and clinical practice 2019; (157): 107843. doi: A10.1016/j.diabres.2019.107843.
3. Fuchsberger C., Flannick J., Teslovich T.M., Mahajan A., Agarwala V., Gaulton K.J. et al. The genetic architecture of type 2 diabetes. Nature 2016; 536(7614): 41-47. doi.org/10.1038/nature18642.
4. Zaccardi F., Webb D.R., Yates T., Davies M.J. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgraduate medical journal 2016; 92(1084): 63-69. doi: 10.1136/postgradmedj-2015-133281.
5. Азарова Ю.Э., Клёсова Е.Ю., Самгина Т.А., Сакали С.Ю., Коломоец И.И., Азарова В.А. и др. Роль полиморфных вариантов гена CYBA в патогенезе сахарного диабета 2 типа. Медицинская генетика 2019; 18(8): 37-48. doi: 10.25557/2073-7998.2019.08.37-48.
6. Rains J.L., Jain S.K. Oxidative stress, insulin signaling, and diabetes. Free Radical Biology and Medicine 2011; 50(5): 567-575. doi: 10.1016/j.freeradbiomed.2010.12.006.
7. Gudmundsson J., Sulem P., Steinthorsdottir V., Bergthorsson J.T., Thorleifsson G., Manolescu A. et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007; 39(8): 977-983. doi: 10.1038/ng2062.
8. Miyake K., Yang W., Hara K., Yasuda K., Horikawa Y., Osawa H. et al. Construction of a prediction model for type 2 diabetes mellitus in the Japanese population based on 11 genes with strong evidence of the association. J Hum Genet 2009; 54(4): 236-241. doi: 10.1038/jhg.2009.17.
9. Deng X., Liu H., Nalima A.Q., Zhu J. Association of polymorphisms rs290487, rs864745, rs4430796 and rs23136 with type 2 diabetes in the Uyghur population in China. Int J Clin Exp Pathol 2017; 10(8): 8813-8819.
10. Edghill E.L., Bingham C., Ellard S., Hattersley A.T. Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet 2006; 43(1): 84-90. doi: 10.1136/jmg.2005.032854.
11. Horikawa Y., Iwasaki N., Hara M., Furuta H., Hinokio Y., Cockburn B.N. et al. Mutation in hepatocyte nuclear factor-1-beta gene (TCF2) associated with MODY. Nature Genet 1997; 17(4): 384-385. doi: 10.1038/ng1297-384.
12. Lindner T.H., Njolstad P.R., Horikawa Y., Bostad L., Bell G.I., Sovik O. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1-beta. Hum Molec Genet 1999; 8(11): 2001-2008. doi:10.1093/hmg/8.11.2001.
13. Wu C., Jin X., Tsueng G., Afrasiabi C., Su A.I. BioGPS: building your own mash-up of gene annotations and expression profiles. Nucleic acids research 2016; 44(D1): D313-D316. doi: 10.1093/nar/gkv1104.
14. Holmkvist J., Almgren P., Lyssenko V., Lindgren C.M., Eriksson K.F., Isomaa B. et al. Common variants in maturity-onset diabetes of the young genes and future risk of type 2 diabetes. Diabetes. 2008; 57(6): 1738-1744. doi: 10.2337/db06-1464.
15. Brito E.C., Lyssenko V., Renström F., Berglund G., Nilsson P.M., Groop L. et al. Previously associated type 2 diabetes variants may interact with physical activity to modify the risk of impaired glucose regulation and type 2 diabetes: a study of 16,003 Swedish adults. Diabetes 2009; 58(6): 1411-1418. doi: 10.2337/db08-1623.
16. Азарова Ю.Э., Клёсова Е.Ю., Сакали С.Ю., Ковалев А.П. Вклад полиморфизма rs11927381 гена IGF2BP2 в патогенез сахарного диабета 2 типа. Научные результаты биомедицинских исследований 2020; 6(1): 9-19. doi: 10.18413/2658-6533-2020-6-1-0-2.
17. Solé X., Guinó E., Valls J., Iniesta R., Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics 2006; 22(15): 1928-1929. doi: 10.1093/bioinformatics/btl268.
18. Lonsdale J., Thomas J., Salvatore M., Phillips R., Lo E., Shad S. et al. The genotype-tissue expression (GTEx) project. Nature genetics 2013; 45(6): 580-585. doi: 10.1038/ng.2653.
19. Gaunt T.R., Shihab H.A., Hemani G., Min J.L., Woodward G., Lyttleton O. et al. Systematic identification of genetic influences on methylation across the human life course. Genome Biology 2016; 17(1): 1-14. doi: 10.1186/s13059-016-0926-z.
20. Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-D613. doi: 10.1093/nar/gky1131.
21. Mi H., Huang X., Muruganujan A., Tang H., Mills C., Kang D. et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic acids research 2017; 45(D1): D183-D189. doi: 10.1093/nar/gkw1138.
22. Ek J., Grarup N., Urhammer S.A., Gæde P.H., Drivsholm T., Borch-Johnsen K. et al. Studies of the variability of the hepatocyte nuclear factor-1β (HNF-1β/TCF2) and the dimerization cofactor of HNF-1 (DcoH/ PCBD) genes in relation to type 2 diabetes mellitus and β-cell function. Hum Mutat 2001; 18(4): 356-357. doi: 10.1002/humu.1201.
23. Kim E.K., Lee J.S., Cheong H.I., Chung S.S., Kwak S.H., Park K.S. Identification and functional characterization of P159L mutation in HNF1B in a family with maturity-onset diabetes of the young 5 (MODY5). Genomics and informatics 2014; 12(4): 240. doi: 10.5808/GI.2014.12.4.240.
24. Chan S.C., Zhang Y., Shao A., Avdulov S., Herrera J., Aboudehen K. et al. Mechanism of fibrosis in HNF1B-related autosomal dominant tubulointerstitial kidney disease. Journal of the American Society of Nephrology 2018; 29(10): 2493-2509. doi: 10.1681/ASN.2018040437.
25. Clissold R.L., Hamilton A.J., Hattersley A.T., Ellard S., Bingham C. HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nature Reviews Nephrology 2015; 11(2): 102. doi: 10.1038/nrneph.2014.232.
26. Kanikarla-Marie P., Micinski D., Jain S.K. Hyperglycemia (high-glucose) decreases l-cysteine and glutathione levels in cultured monocytes and blood of Zucker diabetic rats. Molecular and cellular biochemistry 2019; 459(1-2): 151-156. doi: 10.1007/s11010-019-03558-z.
27. Lagman M., Ly J., Saing T., Singh M.K., Tudela E.V., Morris D. et al. Investigating the causes for decreased levels of glutathione in individuals with type II diabetes. PLoS One 2015; 10(3): e0118436. doi: 10.1371 / journal.pone.0118436.
28. Axelsson A.S., Mahdi T., Nenonen H.A., Singh T., Hänzelmann S., Wendt A. et al. Sox5 regulates beta-cell phenotype and is reduced in type 2 diabetes. Nature communications 2017; 18(1): 1-16. doi: 10.1038/ncomms15652.
29. Turner N., Kowalski G.M., Leslie S.J., Risis S., Yang C., Lee-Young R.S. et al. Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 2013; 56(7): 1638-1648. doi: 10.1007/s00125-013-2913-1.
30. Corkey B.E. Diabetes: Have We Got It All Wrong?: Insulin hypersecretion and food additives: cause of obesity and diabetes?. Diabetes care 2016; 35(12): 2432-2437. doi: 10.2337/dc12-0825.
31. Czech M.P. Insulin action and resistance in obesity and type 2 diabetes. Nature medicine 2017; 23(7): 804-814. doi: 10.1038/nm.4350.
Review
For citations:
Azarova I.E., Klyosova E.Yu., Polonikov A.V. Polymorphic variant rs4430796 at HNF1B gene: sex-specific, BMI-dependent associations with parameters of glucose metabolism, redox homeostasis and risk of type 2 diabetes. Medical Genetics. 2021;20(1):25-36. (In Russ.) https://doi.org/10.25557/2073-7998.2021.01.25-36