Preview

Medical Genetics

Advanced search

Analysis of automatically extracted white blood cell DNA yield

https://doi.org/10.25557/2073-7998.2020.10.40-50

Abstract

The continuing development of mass DNA extraction methods entails the need to set standardisation and quality verification reference points. A study has been conducted and standards set for one of the many methods of DNA extraction - the automated мagnetic beads-based extraction using QIAsymphony SP station. It was shown that the concentration of DNA in an individual sample is mainly determined by the leukocyte content in the initial blood sample (correlation of about 0.9). DNA concentration also depends on the measurement method. It allowed us to build linear regression models and derive formulae that accurately predict the concentration of DNA in the sample for the use of two widely used methods - spectrophotometric (Nanodrop) and fluorescence (Qubit). It was found that the latest Nanodrop OneC model, thanks to a built-in algorithm for identifying impurities and adjusting the concentration, provides an even more accurate concentration estimate than Qubit 4.0. For a quick but rough forecast of DNA concentration, instead of regression models, standards calculated by us for reference values of the white blood cell count can be used.

About the Authors

M. V. Olkova
Research Centre for Medical Genetics
Russian Federation


E. V. Balanovska
Research Centre for Medical Genetics
Russian Federation


L. S. Bychkovskaya
Research Centre for Medical Genetics
Russian Federation


O. P. Balanovsky
Research Centre for Medical Genetics
Russian Federation


References

1. Müller H., Dagher G., Loibner M., et al. Biobanks for life sciences and personalized medicine: importance of standardization, biosafety, biosecurity, and data management. Current Opinion in Biotechnology. 2020;. 65: 45-51.

2. Coppola L., Cianflone A., Grimaldi A.M., et al. Biobanking in health care: Evolution and future directions [Internet]. Journal of Translational Medicine. 2019; 17: 172.

3. Baber R., Kiehntopf M. Automation in biobanking from a laboratory medicine perspective. J Lab Med. 2019; 43(6):329-38.

4. Szczepek A.J., Frejo L., Vona B., et al. Recommendations on Collecting and Storing Samples for Genetic Studies in Hearing and Tinnitus Research. Ear Hear. 2019;40(2):219-26.

5. Qamar W., Khan M.R., Arafah A. Optimization of conditions to extract high quality DNA for PCR analysis from whole blood using SDS-proteinase K method. Saudi J Biol Sci. 2017; 24(7):1465-9.

6. Griffiths L., Chacon-Cortes D. Methods for extracting genomic DNA from whole blood samples: current perspectives. J Biorepository Sci Appl Med. 2014;2:1.

7. Dairawan M., Shetty P.J. The Evolution of DNA Extraction Methods. 2020;(1):2020-8.

8. Psifidi A., Dovas C.I., Bramis G., et al. Comparison of Eleven Methods for Genomic DNA Extraction Suitable for Large-Scale Whole-Genome Genotyping and Long-Term DNA Banking Using Blood Samples. PLoS One. 2015;10(1):e0115960.

9. Looi M.L., Zakaria H., Osman J., et al. Quantity and quality assessment of DNA extracted from saliva and blood. Clin Lab. 2012;58(3-4):307-12.

10. Петров Д.Г., Макарова Е.Д., Гермаш Н.Н., и др. Эффективные методы выделения нуклеиновых кислот для проведения анализов в молекулярной биологии. Научное Приборостроение. 2010;20(1):3-9.

11. DNA Purification | DNA Extraction Methods | Promega [Internet]. [cited 2020 Jun 28]. Available from: https://worldwide.promega.com/resources/guides/nucleic-acid-analysis/dna-purification/

12. Gong R., Li S. Extraction of human genomic DNA from whole blood using a magnetic microsphere method. Int J Nanomedicine. 2014;9(1):3781-9.

13. Laus S., Kingsley L.A., Green M., et al. Comparison of QIAsymphony automated and QIAamp manual DNA extraction systems for measuring epstein-barr virus DNA load in whole blood using real-time PCR. J Mol Diagnostics. 2011;13(6):695-700.

14. Kruhøffer M., Voss T., Beller K., et al. Evaluation of the QIAsymphony SP Workstation for Magnetic Particle-Based Nucleic Acid Purification from Different Sample Types for Demanding Downstream Applications. J Lab Autom. 2010;15(1):41-51.

15. Spalletti-Cernia D., Barbato S., Sorrentino R., et al. Evaluation of the Automated QIAsymphony SP/AS Workflow for Cytomegalovirus DNA Extraction and Amplification from Dried Blood Spots. Intervirology. 2016;59(4):211-6.

16. Parham N.J., Parmar S.A., Kumar N., et al. Automated nucleic acid isolation in viral molecular diagnostics: Evaluation of the QIAsymphony SP. Br J Biomed Sci. 2012;69(1):18-25.

17. Youssef O., Poizot-Martin I., Taouqi M., et al. Optimization of automated germline DNA extraction from non-tumoral formalin-fixed paraffin embedded (FFPE) tissues. Vol. 30, Abstract Book of the 44th ESMO Congress (ESMO 2019) 27 September - 1 October 2019, Barcelona, Spain. 2019.

18. Biobank Côte d’Azur human collection [Internet]. [cited 2020 Jun 27]. Available from: http://www.biobank-cotedazur.fr/en/biobanking.cfm

19. CCG: Cologne Center for Genomics (CCG) [Internet]. [cited 2020 Jun 28]. Available from: https://ccg.uni-koeln.de/

20. Services - Institute of Translational Medicine - University of Liverpool [Internet]. [cited 2020 Jun 27]. Available from: https://www.liverpool.ac.uk/translational-medicine/research/lbih/services/

21. Проект Российские геномы | Санкт-Петербургский Государственный Университет [Internet]. [cited 2020 Jun 27]. Available from: http://genomerussia.spbu.ru/

22. R: The R Project for Statistical Computing [Internet]. [cited 2020 Jun 28]. Available from: https://www.r-project.org/

23. Doležel J., Bartoš J., Voglmayr H., et al. Letter to the editor. Cytometry. 2003;51A(2):127-8.

24. Piovesan A., Pelleri M.C., Antonaros.F, et al. On the length, weight and GC content of the human genome. BMC Res Notes. 2019;12(1):106.

25. GRCh38.p13 - Genome - Assembly - NCBI [Internet]. [cited 2020 Jun 27]. Available from: https://www.ncbi.nlm.nih.gov/assembly/GCA_000001405.28

26. Fundamental physical constants. Nature. 1930; 126: 111.

27. Homo sapiens (ID 51) - Genome - NCBI [Internet]. [cited 2020 Jun 27]. Available from: https://www.ncbi.nlm.nih.gov/genome/51

28. Fazzini F., Schöpf B., Blatzer M., et al. Plasmid-normalized quantification of relative mitochondrial DNA copy number. Sci Rep. 2018;8(1):1-11.

29. Leucocytes trop bas ou trop élevés : que faire ? - Top Santé [Internet]. [cited 2020 Jun 27]. Available from: https://www.topsante.com/medecine/analyses-de-sang/leucocytes-taux-trop-bas-ou-trop-eleves

30. Haematology Normal Adult Reference Ranges [Internet]. [cited 2020 Jun 27]. Available from: https://www.royalwolverhampton.nhs.uk/services/service-directory-a-z/pathology-services/departments/haematology/haematology-normal-adult-reference-ranges/

31. Table 1, Complete blood count - Blood Groups and Red Cell Antigens - NCBI Bookshelf [Internet]. [cited 2020 Jun 27]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2263/table/ch1.T1/

32. White blood cell count. Nurs Crit Care [Internet]. 2019 Jan [cited 2020 Jun 27];14(1):40. Available from: https://journals.lww.com/nursingcriticalcare/Fulltext/2019/01000/White_blood_cell_count.7.aspx

33. Reich D., Nalls M.A., Kao W.H.L., et al. Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet. 2009;5(1).

34. Кишкун А. Руководство по лабораторным методам диагностики. ГЭОТАР-мед. Москва; 2007.

35. Гематологические анализаторы Micros: принципиальные отличия и поддерживаемые функции [Internet]. [cited 2020 Jun 27]. Available from: http://medbuy.ru/articles/chem-otlichayutsya-gematologicheskie-analizatory-micros-ot-svoih-analogov

36. QubitTM dsDNA BR Assay Kit [Internet]. [cited 2020 Jun 27]. Available from: https://www.thermofisher.com/order/catalog/product/Q32850#/Q32850

37. NanoDrop Products Guide | Thermo Fisher Scientific - RU [Internet]. [cited 2020 Jun 27]. Available from: https://www.thermofisher.com/ru/ru/home/industrial/spectroscopy-elemental-isotope-analysis/molecular-spectroscopy/ultraviolet-visible-visible-spectrophotometry-uv-vis-vis/uv-vis-vis-instruments/nanodrop-microvolume-spectrophotometers/nanodrop-products-guide.html?SID=fr-nanodrop-1

38. Балановский О.П., Кагазежева Ж.А., Олькова М.В. Методы измерения концентрации ДНК: совпадение относительных величин и различия абсолютных. Вестник Российского государственного медицинского университета. 2019;(3):27-33.

39. Schneider V.A., Graves-Lindsay T., Howe K., et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 2017;27(5):849-64.

40. D’Erchia A.M., Atlante A., Gadaleta G., et al. Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity. Mitochondrion. 2015;20:13-21.


Review

For citations:


Olkova M.V., Balanovska E.V., Bychkovskaya L.S., Balanovsky O.P. Analysis of automatically extracted white blood cell DNA yield. Medical Genetics. 2020;19(10):40-50. (In Russ.) https://doi.org/10.25557/2073-7998.2020.10.40-50

Views: 873


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)