Preview

Medical Genetics

Advanced search

Design of targeted gene panel for molecular diagnostics of thyroid cancer

https://doi.org/10.1234/XXXX-XXXX-2016-9-44-48

Abstract

Thyroid cancer is the most common endocrine malignancy. The key approach for thyroid cancer diagnosis is cytology of fine needle aspiration biopsy (FNA) samples. FNA specimens have indeterminate cytology in 20-30%. This results in wrong clinical diagnosis and impropriate treatment strategy. Currently known mutations describe vast majority of thyroid cancer cases. Detection of the driver mutations is supposed to improve diagnostic accuracy. The aim of the work is to develop next-generation sequencing based diagnostic panel for thyroid cancer. The analysis of the English-language literature, COSMIC database (DB), as well as results of the research project the Cancer Genome Atlas was performed. In total, 456 point somatic mutations in 25 genes, 23 genetic translocations, and 3 copy number variations (CNV) mutations were identified. Using AmpliSeq Designer, 2 Custom Panels were created - for the detection of point mutations, small indels and CNV (1) and for the detection of translocations (2). The custom Panel for the detection of point mutations, small indels and CNV contains 221 primer pairs in 2 pools, covering 99.59% selected targeted regions. The design also incorporated the regions of the RET gene for detection of germline mutations associated with hereditary medullary thyroid cancer. RNA Gene Fusion designs tool in AmpliSeq Designer was used to design the Panel for the detection of 23 translocations.

About the Authors

V. D. Yakushina
Federal State Budgetary Institution «Research Centre for Medical Genetics»
Russian Federation


M. A. Zaytseva
Parseq Lab
Russian Federation


A. E. Pavlov
Parseq Lab
Russian Federation


L. V. Lerner
PreMed-European Technologies
Russian Federation


A. V. Lavrov
Federal State Budgetary Institution «Research Centre for Medical Genetics»; Russian National Research Medical University
Russian Federation


References

1. Hsiao SJ, Nikiforov YE. Molecular approaches to thyroid cancer diagnosis. Endocr Relat Cancer. 2014;21(5):T301-T313. doi:10.1530/ERC-14-0166.

2. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda system for reporting thyroid cytopathology: A meta-analysis. Acta Cytol. 2012;56(4):333-339. doi:10.1159/000339959.

3. Forbes SA, Beare D, Gunasekaran P, et al. COSMIC: Exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43(D1):D805-D811. doi:10.1093/nar/gku1075.

4. Cerami E, Gao J, Dogrusoz U, et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012;2(5):401-404. doi:10.1158/2159-8290.CD-12-0095.

5. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci Signal. 2013;6(269):pl1-pl1. doi:10.1126/scisignal.2004088.

6. Cancer Genome Atlas Research Network N, Akbani R, Aksoy BA, et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676-690. doi:10.1016/j.cell.2014.09.050.

7. Hall, R.D., & Kudchadkar, R.R. (2014). BRAF Mutations: Signaling, Epidemiology, and Clinical Experience in Multiple Malignancies. Cancer Control, 21(221). Retrieved from www.henrydomke.com.

8. Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052-1066. doi:10.1172/JCI85271.

9. Xing M, Pylayeva-Gupta Y, Grabocka E, et al. Clinical utility of RAS mutations in thyroid cancer: a blurred picture now emerging clearer. BMC Med. 2016;14(1):12. doi:10.1186/s12916-016-0559-9.

10. Lazzereschi D, Nardi F, Turco A, et al. A complex pattern of mutations and abnormal splicing of Smad4 is present in thyroid tumours. Oncogene. 2005;24(34):5344-5354. doi:10.1038/sj.onc.1208603.

11. D’Inzeo S, Nicolussi A, Donini CF, et al. A novel human Smad4 mutation is involved in papillary thyroid carcinoma progression. Endocr Relat Cancer. 2012;19(1):39-55. doi:10.1530/ERC-11-0233.

12. Figlioli G, Landi S, Romei C, Elisei R, Gemignani F. Medullary thyroid carcinoma (MTC) and RET proto-oncogene: Mutation spectrum in the familial cases and a meta-analysis of studies on the sporadic form. Mutat Res - Rev Mutat Res. 2013;752(1):36-44. doi:10.1016/j.mrrev.2012.09.002.

13. Karunamurthy A, Panebianco F, Hsiao S, et al. Prevalence and phenotypic characteristics of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer. 2016;(February):ERC - 16-0043 -. doi:10.1530/ERC-16-0043.

14. Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115(1):94-101. doi:10.1172/JCI200523237.

15. Marotta V, Guerra A, Sapio MR, Vitale M. RET/PTC rearrangement in benign and malignant thyroid diseases: a clinical standpoint. Eur J Endocrinol. 2011;165(4):499-507. doi:10.1530/eje-11-0499.

16. Eberhardt NL, Grebe SKG, McIver B, Reddi H V. The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol. 2010;321(1):50-56. doi:10.1155/2008/672829.

17. Duan J, Zhang J-G, Deng H-W, Wang Y-P. Comparative Studies of Copy Number Variation Detection Methods for Next-Generation Sequencing Technologies. Salamin N, ed. PLoS ONE. 2013;8(3):e59128. doi:10.1371/journal.pone.0059128.


Review

For citations:


Yakushina V.D., Zaytseva M.A., Pavlov A.E., Lerner L.V., Lavrov A.V. Design of targeted gene panel for molecular diagnostics of thyroid cancer. Medical Genetics. 2016;15(9):44-48. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2016-9-44-48

Views: 1340


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)