Design of targeted gene panel for molecular diagnostics of thyroid cancer
https://doi.org/10.1234/XXXX-XXXX-2016-9-44-48
Abstract
About the Authors
V. D. YakushinaRussian Federation
M. A. Zaytseva
Russian Federation
A. E. Pavlov
Russian Federation
L. V. Lerner
Russian Federation
A. V. Lavrov
Russian Federation
References
1. Hsiao SJ, Nikiforov YE. Molecular approaches to thyroid cancer diagnosis. Endocr Relat Cancer. 2014;21(5):T301-T313. doi:10.1530/ERC-14-0166.
2. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda system for reporting thyroid cytopathology: A meta-analysis. Acta Cytol. 2012;56(4):333-339. doi:10.1159/000339959.
3. Forbes SA, Beare D, Gunasekaran P, et al. COSMIC: Exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43(D1):D805-D811. doi:10.1093/nar/gku1075.
4. Cerami E, Gao J, Dogrusoz U, et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012;2(5):401-404. doi:10.1158/2159-8290.CD-12-0095.
5. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci Signal. 2013;6(269):pl1-pl1. doi:10.1126/scisignal.2004088.
6. Cancer Genome Atlas Research Network N, Akbani R, Aksoy BA, et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676-690. doi:10.1016/j.cell.2014.09.050.
7. Hall, R.D., & Kudchadkar, R.R. (2014). BRAF Mutations: Signaling, Epidemiology, and Clinical Experience in Multiple Malignancies. Cancer Control, 21(221). Retrieved from www.henrydomke.com.
8. Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052-1066. doi:10.1172/JCI85271.
9. Xing M, Pylayeva-Gupta Y, Grabocka E, et al. Clinical utility of RAS mutations in thyroid cancer: a blurred picture now emerging clearer. BMC Med. 2016;14(1):12. doi:10.1186/s12916-016-0559-9.
10. Lazzereschi D, Nardi F, Turco A, et al. A complex pattern of mutations and abnormal splicing of Smad4 is present in thyroid tumours. Oncogene. 2005;24(34):5344-5354. doi:10.1038/sj.onc.1208603.
11. D’Inzeo S, Nicolussi A, Donini CF, et al. A novel human Smad4 mutation is involved in papillary thyroid carcinoma progression. Endocr Relat Cancer. 2012;19(1):39-55. doi:10.1530/ERC-11-0233.
12. Figlioli G, Landi S, Romei C, Elisei R, Gemignani F. Medullary thyroid carcinoma (MTC) and RET proto-oncogene: Mutation spectrum in the familial cases and a meta-analysis of studies on the sporadic form. Mutat Res - Rev Mutat Res. 2013;752(1):36-44. doi:10.1016/j.mrrev.2012.09.002.
13. Karunamurthy A, Panebianco F, Hsiao S, et al. Prevalence and phenotypic characteristics of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer. 2016;(February):ERC - 16-0043 -. doi:10.1530/ERC-16-0043.
14. Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115(1):94-101. doi:10.1172/JCI200523237.
15. Marotta V, Guerra A, Sapio MR, Vitale M. RET/PTC rearrangement in benign and malignant thyroid diseases: a clinical standpoint. Eur J Endocrinol. 2011;165(4):499-507. doi:10.1530/eje-11-0499.
16. Eberhardt NL, Grebe SKG, McIver B, Reddi H V. The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol. 2010;321(1):50-56. doi:10.1155/2008/672829.
17. Duan J, Zhang J-G, Deng H-W, Wang Y-P. Comparative Studies of Copy Number Variation Detection Methods for Next-Generation Sequencing Technologies. Salamin N, ed. PLoS ONE. 2013;8(3):e59128. doi:10.1371/journal.pone.0059128.
Review
For citations:
Yakushina V.D., Zaytseva M.A., Pavlov A.E., Lerner L.V., Lavrov A.V. Design of targeted gene panel for molecular diagnostics of thyroid cancer. Medical Genetics. 2016;15(9):44-48. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2016-9-44-48