Preview

Медицинская генетика

Расширенный поиск

Генетические аномалии: влияние на эффективность терапии, выживаемость больных множественной миеломой, роль в оценке минимальной остаточной болезни

https://doi.org/10.1234/XXXX-XXXX-2016-9-29-39

Полный текст:

Аннотация

При ряде онкологических заболеваний генетические аномалии (ГА) демонстрируют самостоятельное влияние на продолжительность жизни больных. В нашем исследовании определена частота встречаемости аномалий генетического аппарата и их прогностический потенциал при множественной миеломе (ММ). Выявление аномалий проводилось стандартным цитогенетическим методом и флуоресцентной гибридизацией in situ (FISH). У пациентов определялись перестройка гена IgH (t(11;14), t(4;14) и др.), del(13)(q14), del(17)(p13.1), аномалии хромосомы 1, гиподиплоидия, гипердиплоидия, сочетанный и комплексный кариотипы. У 57,1% пациентов ГА отсутствовали, а частота встречаемости аномалий хромосомы 1, t(11;14), del(13)(q14), t(4;14), del(17)(p13.1), гипердиплоидии, гиподиплоидии равнялась 28,6%, 20,3%, 18,1%, 6,8%, 5,6%, 3,6 и 2,9% соответственно. Длительность наблюдения составила в среднем 5 лет и показала, что del(17)(p13.1) уменьшала общую выживаемость (ОВ), в то время как t(11;14) не влияла на прогноз. Комплексный кариотип продемонстрировал негативное влияние на показатели выживаемости, в основном, за счет наличия прогностически неблагоприятных ГА (del17p13.1, del13q14, t(4;14), (dup(1q)). Минимальная остаточная болезнь (МОБ) может быть выявлена не только путем многоцветной проточной цитометрии (ПЦ), но и генетическими методами исследований, направленными на выявление ранее обнаруженных ГА.

Об авторах

А. Д. Гарифуллин
Федеральное государственное бюджетное учреждение «Российский научно-исследовательский институт гематологии и трансфузиологии Федерального медико-биологического агентства»
Россия


С. В. Волошин
Федеральное государственное бюджетное учреждение «Российский научно-исследовательский институт гематологии и трансфузиологии Федерального медико-биологического агентства»
Россия


И. С. Мартынкевич
Федеральное государственное бюджетное учреждение «Российский научно-исследовательский институт гематологии и трансфузиологии Федерального медико-биологического агентства»
Россия


Е. В. Клеина
Федеральное государственное бюджетное учреждение «Российский научно-исследовательский институт гематологии и трансфузиологии Федерального медико-биологического агентства»
Россия


Г. Н. Салогуб
Федеральное государственное бюджетное образовательное учреждение высшего образования «Первый Санкт-Петербургский государственный медицинский университет им. академика И.П. Павлова» Министерства здравоохранения Российской Федерации; Федеральное государственное бюджетное учреждение «Северо-Западный федеральный медицинский исследовательский центр им. В.А. Алмазова» Министерства здравоохранения Российской Федерации
Россия


Е. В. Карягина
Санкт-Петербургское государственное бюджетное учреждение здравоохранения Городская больница №15
Россия


К. М. Абдулкадыров
Федеральное государственное бюджетное учреждение «Российский научно-исследовательский институт гематологии и трансфузиологии Федерального медико-биологического агентства»
Россия


А. В. Чечеткин
Федеральное государственное бюджетное учреждение «Российский научно-исследовательский институт гематологии и трансфузиологии Федерального медико-биологического агентства»
Россия


Список литературы

1. Гематология: Новейший справочник. Санкт-Петербург: Изд-во Сова; 2004. 928 с.

2. Kyle RA, Rajkumar SV. Plasma cell disorders. In: Goldman L, Ausiello DA, eds. Cecil Textbook of Medicine. 22nd ed. Philadelphia, PA: W.B. Saunders; 2004:1184-1195.

3. Greipp P.R., San Miguel J., Durie B.G. et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23:3412-3420.

4. Dewald GW, Kyle RA, Hicks GA, Greipp PR. The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis. Blood. 1985;66:380-390.

5. Sawyer JR, Waldron JA, Jagannath S, Barlogie B. Cytogenetic finding in 200 patients with multiple myeloma. Cancer Genet Cytogenet. 1995;82:41-49.

6. Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood. 2001;98:2229-2238.

7. Barlogie B, Alexanian R, Dixon D et al. Prognostic implications of tumor cell DNA and RNA content in multiple myeloma. Blood. 1985;66:338-341.

8. Drach J, Schuster J, Nowotny H, et al. Multiple myeloma: high incidence of chromosomal aneuploidy as detected by interphase fluorescence in situ hybridization. Cancer Res. 1995;55:3854- 3859.

9. Zojer N, Konigsberg R, Ackermann J, et al. Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Blood. 2000;95:1925-1930.

10. Facon T, Avet-Loiseau H, Guillerm G, et al. Chromosome 13 abnormalities identified by FISH analysis and serum 2-microglobulin produce a very powerful myeloma staging system for pa- tients receiving high dose therapy. Blood. 2001; 97:1566-1571.

11. Fonseca R, Harrington D, Oken MM, et al. Biological and prognostic significance of interphase fluorescence in situ hybridization detection of chromosome 13 abnormalities (13) in multiple myeloma: an Eastern Cooperative Oncology Group study. Cancer Res. 2002;62:715-720.

12. Fonseca R, Blood E, Rue M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101:4569-4575.

13. Chang H, Qi C, Yi QL, Reece D, Stewart AK. p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autolo- gous stem cell transplantation. Blood. 2005;105:358-360.

14. Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36:842-854.

15. Rifkin R, Gregory SA, Mohrbacher A, Hussein M. Pegylated liposomal doxorubicin, vincristine, and dexamethasone provie significant reduction in toxicity compared with doxorubicin, vincristine, and dexamethasone in patients with newly diagnosed multiple myeloma: a phase III multicenter randomized trial. Cancer 2006;106:848-858.

16. San Miguel JF, Schlag R, Khuageva NK, et al. Persistent overall survival benefit and no increased risk of second malignancies with bortezomib-melphalan-prednisone versus melphalan-prednisone in patients with previously untreated multiple myeloma. J Clin Oncol 2013;31:448-455.

17. Richardson P, Sonneveld P, Schuster M, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005;352:2487-2498.

18. Reeder CB, Reece DE, Kukreti V, et al. Cyclophosphamide, bortezomib and dexamethasone induction for newly diagnosed multiple myeloma: high response rates in a phase II clinical trial. Leukemia 2009;23:1337-1341.

19. Rajkumar SV, Jacobus S, Callander NS, et al. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol 2010;11:29-37.

20. Rajkumar S, Blood EA, Vesole D, et al. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol 2006;24:431-436.

21. Cavo M, Tacchetti P, Patriarca F, et al. Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet 2010;376:2075-2085.

22. Richardson P, Weller E, Lonial S, et al. Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 2010;116:679-686.

23. Moreau P, Facon T, Attal M, et al. Comparison of 200 mg/m(2) melphalan and 8 Gy total body irradiation plus 140 mg/m(2) melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood 2002;99:731-735.

24. Simons A, Shaffer LG, Hastings RJ. Cytogenetic Nomenclature: Changes in the ISCN 2013 Compared to the 2009 Edition. Cytogenet Genome Res 2013;141:1-6.

25. Smadja NV, Bastard C, Brigaudeau C, et al. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 2001;98(7):2229-2238.

26. Perez-Simon JA, Garcia-Sanz R, Tabernero MD, et al. Prognostic value of numerical chromosome aberrations in multiple myeloma: A FISH analysis of 15 different chromosomes. Blood 1998;91:3366-3371.

27. Fassas AB, Spencer T, Sawyer J, et al. Both hypodiploidy and deletion of chromosome 13 independently confer poor prognosis in multiple myeloma. Br. J. Haematol. 2002;118:1041-1047.

28. Fonseca R, Harrington D, Oken M, et al. Myeloma and the t(11;14)(q13;q32) represents a uniquely defined biological subset of patients. Blood 2002;99:3735-3741.

29. Avet-Loiseau H, Li JY, Facon T, et al. High incidence of translocations t(11;14)(q13;q32) and t(4;14)(p16;q32) in patients with plasma cell malignancies. RCancer Res. 1998;58(24):5640-5.

30. Tricot G, Barlogie B, Jagannath S, et al. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 1995;86:4250-4256.

31. Lai JL, Michaux L, Dastugue N, et al. Cytogenetics in multiple myeloma: a multicenter study of 24 patients with t(11;14)(q13;q32) or its variant. Cancer Genet Cytogenet 1998;104:133-138.

32. Jourdan M, Ferlin M, Legouffe E, et al. The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells. Br. J. Haematol. 1988;100:637-646.

33. Fonseca R, Oken M, Harrington D, et al. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q-arm or monosomy. Leukemia (Baltimore) 2001;15:981-986.

34. Keats JJ, Reiman T, Maxwell CA, et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003;101(4):1520-1529.

35. Chang H, Sloan S, Li D, et al. The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. British Journal of Haematology 2004;125(1):64-68.

36. San Miguel JF, Schlag R, Khuageva NK, et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. The New England Journal of Medicine 2008; 359(9): 906-917.

37. Avet-Loiseau H, Leleu X, Roussel M et al. Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). Journal of Clinical Oncology 2010;28(30): 4630-4634.

38. Гарифуллин АД, Мартынкевич ИС, Волошин СВ и др. Роль молекулярно-генетических аномалий в патогенезе и стратификации риска множественной миеломы. Вопросы онкологии 2016;4:14-21.

39. Fonseca R, Oken MM, Harrington D, et al. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy Leukemia 2001;15(6):981-986.

40. Chiecchio L, Protheroe RKM, Ibrahim AH, et al. Deletion of chromosome 13 detected by conventional cytogenetics is a critical prognostic factor in myeloma. Leukemia 2006;20(9):1610-1617.

41. Shaughnessy J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology 2005;10(1):117-126.

42. Fonseca R, Bergsagel PL, Drach J. et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 2009;23(12):2210-2221.

43. Avet-Loiseau H, Soulier J, Fermand JP, et al. Impact of high-risk cytogenetics and prior therapy on out-comes in patients with advanced relapsed or refractory multiple myeloma treated with lenalidomide plus dexamethasone. Leukemia 2010;24(3):623-628.

44. Drach J, Ackermann J, Fritz E, et al. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood 1998;92(3): 802-809.

45. Chang H, Qi X, Jiang A, et al. 1p21 deletions are strongly associated with 1q21 gains and are an independent adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Bone Marrow Transplantation 2010;45(1):117-121.

46. Shaughnessy JD Jr, Zhan F, Burington BE et al. Avalidated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007;109(6):2276-2284.

47. Nemec P, Zemanova Z, Greslicova H, et al. Gain of 1q21 is an unfavorable genetic prognosis factor for multiple myeloma patients treated with high-dose chemotherapy. Biol Blood Marrow Transplant 2010;16(4):548-554.

48. Boyd KD, Ross FM, Walker BA, et al. Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clinical Cancer Research 2011;17(24):7776-7784.

49. Множественная миелома: Руководство для врачей. Санкт-Петербург: Специальное издательство медицинских книг; 2016. 504 с.

50. Mikhael JR, Dingli D, Roy V, et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Guidelines 2013. Mayo Clin Proc 2013;88(7):360-376.

51. Paiva B, Jacques JM. van Dongen, Orfao A. New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood 2015;125:3059-3068.

52. Mailankody S, Korde N, Lesokhin AM, et al. Minimal residual disease in multiple myeloma: bringing the bench to the bedside. Clinical Oncology 2015;12:286-295.

53. Munshi NC. Minimal Residual Disease in Multiple Myeloma. Journal of clinical oncology 2013;31.


Для цитирования:


Гарифуллин А.Д., Волошин С.В., Мартынкевич И.С., Клеина Е.В., Салогуб Г.Н., Карягина Е.В., Абдулкадыров К.М., Чечеткин А.В. Генетические аномалии: влияние на эффективность терапии, выживаемость больных множественной миеломой, роль в оценке минимальной остаточной болезни. Медицинская генетика. 2016;15(9):29-39. https://doi.org/10.1234/XXXX-XXXX-2016-9-29-39

For citation:


Garifullin A.D., Voloshin S.V., Martynkevich I.S., Kleina E.V., Salogub G.N., Karyagina E.V., Abdulkadyrov K.V., Chechetkin A.V. Genetic anomalies show independent influence on life expectancy of patients at oncological diseases. Medical Genetics. 2016;15(9):29-39. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2016-9-29-39

Просмотров: 180


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)