Preview

Медицинская генетика

Расширенный поиск

Генная терапия наследственных заболеваний с использованием технологии CRISPR/Cas9 in vivo

https://doi.org/10.1234/XXXX-XXXX-2016-9-3-11

Полный текст:

Аннотация

Генная терапия с 1970-х годов остается чрезвычайно актуальной, но нерешенной до сих пор задачей. Появление методов геномного редактирования с использованием специфичных нуклеаз открывает новые возможности в лечении различных заболеваний, в том числе моногенных. В обзоре дана краткая характеристика метода CRISPR/Cas9, основные принципы работы, достоинства и недостатки метода, а также представлены примеры успешного применения CRISPR/Cas9 для коррекции мутаций, приводящих к моногенным наследственным заболеваниям, на мышиных моделях и эмбрионах человека.

Об авторах

С. А. Смирнихина
ФГБНУ «Медико-генетический научный центр»
Россия


А. В. Лавров
ФГБНУ «Медико-генетический научный центр»; Государственное бюджетное образовательное учреждение высшего профессионального образования «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Министерства здравоохранения Российской Федерации
Россия


Список литературы

1. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1156-1160.

2. Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014 Mar 6;370(10):901-910.

3. Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011 Jul;39(12):e82.

4. Reardon S. Leukaemia success heralds wave of gene-editing therapies. Nature. 2015 Nov 12;527(7577):146-147.

5. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012 Aug 17;337(6096):816-821.

6. Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014 Sep 15;23(R1):R40-46.

7. Shearer RF, Saunders DN. Experimental design for stable genetic manipulation in mammalian cell lines: lentivirus and alternatives. Genes Cells. 2015 Jan;20(1):1-10.

8. Wong SP, Argyros O, Harbottle RP. Sustained expression from DNA vectors. Adv Genet. 2015;89:113-152.

9. Videira M, Arranja A, Rafael D, Gaspar R. Preclinical development of siRNA therapeutics: towards the match between fundamental science and engineered systems. Nanomedicine. 2014 May;10(4):689-702.

10. Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell. 2016 May 5;18(5):573-586.

11. Maeder ML, Gersbach CA. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther. 2016 Mar;24(3):430-446.

12. Prakash V, Moore M, Yanez-Munoz RJ. Current Progress in Therapeutic Gene Editing for Monogenic Diseases. Mol Ther. 2016 Mar;24(3):465-474.

13. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iop gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429-5433.

14. Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013 Nov;8(11):2281-2308.

15. Moreno-Mateos MA, Vejnar CE, Beaudoin JD, et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. 2015;12:982-988.

16. Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Mol Ther Nucleic Acids. 2015 Nov 17;4:e264.

17. Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529:490-495.

18. Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154:1380-1389.

19. Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. 2014 Jun;32(6):577-582.

20. Gaj T, Epstein BE, Schaffer DV. Genome engineering using adeno-associated virus: basic and clinical research applications. Mol Ther. 2016 Mar;24(3):458-464.

21. Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015 Apr 9;520(7546):186-191.

22. Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015 May;6(5):363-372.

23. Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016 Jan 22;351(6271):400-403.

24. Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016 Jan 22;351(6271):403-407.

25. Tabebordbar M, Zhu K, Cheng JK, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016 Jan 22;351(6271):407-411.

26. Yin H, Song CQ, Dorkin JR, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016 Mar;34(3):328-333.

27. Yang Y, Wang L, Bell P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016 Mar;34(3):334-338.

28. Guan Y, Ma Y, Li Q, et al. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med. 2016 May 2;8(5):477-488.

29. Wu WH, Tsai YT, Justus S, et al. CRISPR repair reveals causative mutation in a preclinical model of retinitis pigmentosa. Mol Ther. 2016 May 20. doi: 10.1038/mt.2016.107. [Epub ahead of print]

30. Wu Y, Liang D, Wang Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. 2013 Dec 5;13(6):659-662.

31. Callaway E. UK scientists gain licence to edit genes in human embryos. Nature. 2016 Feb 4;530(7588):18.

32. Rall S, Grimm T. Survival in Duchenne muscular dystrophy. Acta Myol. 2012 Oct;31(2):117-120.

33. Oshima J, Magner DB, Lee JA, et al. Regional genomic instability predisposes to complex dystrophin gene rearrangements. Hum Genet. 2009 Sep;126(3):411-423.

34. Long C, McAnally JR, Shelton JM, et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014 Sep 5;345(6201):1184-1188.

35. Xu L, Park KH, Zhao L, et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther. 2016 Mar;24(3):564-569.

36. Monaco AP, Bertelson CJ, Liechti-Gallati S, et al. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988 Jan;2(1):90-95.

37. Godfrey C, Muses S, McClorey G, et al. How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the mdx mouse. Hum Mol Genet. 2015 Aug 1;24(15):4225-4237.

38. van Putten M, van der Pijl EM, Hulsker M, et al. Low dystrophin levels in heart can delay heart failure in mdx mice. J Mol Cell Cardiol. 2014 Apr;69:17-23.

39. Aartsma-Rus A, Fokkema I, Verschuuren J, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat. 2009 Mar;30(3):293-299.

40. Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 6th edition. New York: ; 2014. Chapter 21, Genesis and Regeneration of Skeletal Muscle; p. 1232-1235.

41. Bliksrud YT, Brodtkorb E, Andresen PA, et al. Tyrosinaemia type I - de novo mutation in liver tissue suppressing an inborn splicing defect. J Mol Med (Berl). 2005 May;83(5):406-410.

42. Yin H, Xue W, Chen S, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 2014 Jun;32(6):551-553.

43. Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010 Feb;12(2):61-76.

44. Xu P, Tong Y, Liu XZ, et al. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C>T) mutation in b-thalassemia-derived iPSCs. Sci Rep. 2015 Jul 9;5:12065.

45. Niu X, He W, Song B, et al. Combining single-strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in Beta-thalassemia-induced Pluripotent Stem Cells. J Biol Chem. 2016 Jun 10. pii: jbc.M116.719237. [Epub ahead of print]

46. Batshaw ML, Tuchman M, Summar M, et al. A longitudinal study of urea cycle disorders. Mol. Genet. Metab. 2014;113:127-130.

47. Goodeve AC. Hemophilia B: molecular pathogenesis and mutation analysis. J Thromb Haemost. 2015 Jul;13(7):1184-1195.

48. Veltel S, Gasper R, Eisenacher E, Wittinghofer A. The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3. Nat Struct Mol Biol. 2008 Apr;15(4):373-380.


Для цитирования:


Смирнихина С.А., Лавров А.В. Генная терапия наследственных заболеваний с использованием технологии CRISPR/Cas9 in vivo. Медицинская генетика. 2016;15(9):3-11. https://doi.org/10.1234/XXXX-XXXX-2016-9-3-11

For citation:


Smirnikhina S.A., Lavrov A.V. Gene therapy of hereditary diseases by CRISRP/Cas9 technology in vivo. Medical Genetics. 2016;15(9):3-11. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2016-9-3-11

Просмотров: 543


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)