Preview

Medical Genetics

Advanced search

Clinical exome sequencing of gastric cancer

https://doi.org/10.1234/XXXX-XXXX-2016-6-25-30

Abstract

The identification of somatic mutations has the potential to offer diagnostic and prognostic information and inform the selection of therapies. The present study is focusing on implementation of clinical exome sequencing using a Trusight one sequencing panel targeted 4,813 genes associated with known clinical phenotypes. Paired-ended sequencing was performed in six gastric cancer samples and six corresponding adjacent normal gastric specimens using Trusight one sequencing panel on a NEXTSEQ500 platform. We found 102 somatic mutations, all of them were SNP, 30 of them were synonymous substitutions, 66 were nonsynonymous substitutions and six were nonsense mutations. We found 82 novel mutations, from them 10 mutations were localized in genes previously associated with gastric cancer pathogenesis. Somatic mutation of established clinical utility was identified for one patient, and predictively driver mutations were found for three patients. Strategies to effectively and responsibly use these diverse results are required to incorporate tumor exome sequencing and other NGS tests into clinical practice.

About the Authors

T. V. Kekeeva
ГБОУ ДПО «Российская медицинская академия последипломного образования»
Russian Federation


L. Kh. Khashimov
ГБОУ ДПО «Российская медицинская академия последипломного образования»
Russian Federation


V. K. Lyadov
ГБОУ ДПО «Российская медицинская академия последипломного образования»
Russian Federation


A. V. Kanygina
ФГОУ ВПО «Московский физико-технический институт (государственный университет)»
Russian Federation


Yu. Yu. Andreeva
ГБОУ ДПО «Российская медицинская академия последипломного образования»
Russian Federation


L. E. Zavalishina
ГБОУ ДПО «Российская медицинская академия последипломного образования»
Russian Federation


I. V. Poddubnaya
ГБОУ ДПО «Российская медицинская академия последипломного образования»
Russian Federation


V. V. Strelnikov
ФГБНУ «Медико-генетический научный центр»
Russian Federation


D. V. Zaletaev
ФГБНУ «Медико-генетический научный центр»; ГБОУ ВПО Первый МГМУ им. И.М. Сеченова Минздрава России
Russian Federation


G. A. Frank
ГБОУ ДПО «Российская медицинская академия последипломного образования»
Russian Federation


References

1. Bera R., Chiou C., Yu M. et al. Functional genomics identified a novel protein tyrosine phosphatase receptor type F-mediated growth inhibition in hepatocarcinogenesis // Hepatology. - 2014. - Vol. 59. - P. 2238-2250.

2. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma // Nature. - 2014. - Vol. 513. - P. 202-209.

3. Chen K., Yang D., Li X. et al. Mutational landscape of gastric adenocarcinoma in Chinese: implications for prognosis and therapy // Proc. Natl. Acad. Sci. USA. - 2015. - Vol. 112. - P. 1107-1112.

4. Chia N., Tan P. Molecular Classification of Gastric Cancer // Ann. Oncol. - 2016. - doi: 10.1093/annonc/mdw040.

5. Fiszer-Maliszewska L., Kazanowska B., Padzik J. et al. p53 Tetramerization domain mutations: germline R342X and R342P, and somatic R337G identified in pediatric patients with Li-Fraumeni syndrome and a child with adrenocortical carcinoma // Fam Cancer. - 2009. - Vol. 8. - P. 541-546.

6. Hanazono K., Natsugoe S., Stein H. et al. Distribution of p53 mutations in esophageal and gastric carcinomas and the relationship with p53 expression // Oncol Rep. - 2006. - Vol. 15. - P. 821-824.

7. Jiang Z., Zhang Z., Wang Z. et al. Association of the 463G-A myeloperoxidase gene polymorphism with gastric cancer risk // Hepatogastroenterology. - 2012. - Vol. 59. - P. 757-761.

8. Jinawath N., Furukawa Y., Hasegawa S. et al. Comparison of gene-expression profiles between diffuse- and intestinal-type gastric cancers using a genome-wide cDNA microarray // Oncogene. - 2004. - Vol. 23. - P. 6830-6844.

9. Jones S., Anagnostou V., Lytle K. et al. Personalized genomic analyses for cancer mutation discovery and interpretation // Sci. Transl. Med. - 2015. - Vol. 7. - P. 283ra53.

10. Krishnan V., Ebert P., Ting J. et al. Whole-genome sequencing of Asian lung cancers: second-hand smoke unlikely to be responsible for higher incidence of lung cancer among Asian never-smokers // Cancer Res. - 2014. - Vol. 74. - P. 6071-6081.

11. Lee E., Jin G., Lee S. TP53 Mutations in Korean Patients with Non-small Cell Lung Cancer // J. Korean Med. Sci. - 2010. - Vol. 25. - P. 698-705.

12. Li Q., Liu X., Gibbs R. et al. Gene-specific function prediction for non-synonymous mutations in monogenic diabetes genes // PLoS One. - 2014. - 9 (8). - e104452.

13. Liu J., McCleland M., Stawiski E. et al. Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer // Nat. Commun. - 2014. - Vol. 8. - P. 3830.

14. Liu Y., Chen L., Peng S. et al. Role of CD97 and CD55 as molecular markers for prognosis and therapy of gastric carcinoma patients // J. Zhejiang Univ. Sci. B. - 2005. - Vol. 6. - P. 913-918.

15. Parsons D., Roy A., Yang Y. et al. Diagnostic Yield of Clinical Tumor and Germline Whole-Exome Sequencing for Children With Solid Tumors // JAMA Oncol. - 2016. - doi: 10.1001/jamaoncol.2015.5699.

16. Vega A., Medranо C. , Navarrete R. et al. Molecular diagnosis of glycogen storage disease and disorders with overlapping clinical symptoms by massive parallel sequencing // Genetics in medicine. - 2016. - doi:10.1038/gim.2015.217.

17. Wang K., Kan J., Yuen S. et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer // Nat. Genet. - 2011. - Vol. 43. - P. 1219-1223.

18. Wang Q., Jia P., Li F. et al. Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers // Genome Med. - 2013. - Vol. 5. - P. 91.

19. Wu Q., Li X., Yang H. et al. Extracellular matrix protein 1 is correlated to carcinogenesis and lymphatic metastasis of human gastric cancer // World J. Surg. Oncol. - 2014. - Vol. 12. - P. 132.

20. Wu R., Wang T. and Shih I. The emerging roles of ARID1A in tumor suppression // Cancer Biol. Ther. - 2014. - Vol. 15. - P. 655-664.

21. Yoo T., Ryu B., Lee M., Chi S. CD81 is a candidate tumor suppressor gene in human gastric cancer // Cell Oncol (Dordr). - 2013. - Vol. 36. - P. 141-153.

22. Yu J., Wu W., Li X. et al. Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer // Gut. - 2015. - Vol. 64. - P. 636-645.

23. Zang Z., Cutcutache I., Poon S. et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes // Nat. Genet. - 2012. - Vol. 44. - P. 570-574.

24. Zhou X., Xu G., Yin C. et al. Down-regulation of miR-203 induced by Helicobacter pylori infection promotes the proliferation and invasion of gastric cancer by targeting CASK // Oncotarget. - 2014. - Vol. 5. - P. 11631-11640.


Review

For citations:


Kekeeva T.V., Khashimov L.Kh., Lyadov V.K., Kanygina A.V., Andreeva Yu.Yu., Zavalishina L.E., Poddubnaya I.V., Strelnikov V.V., Zaletaev D.V., Frank G.A. Clinical exome sequencing of gastric cancer. Medical Genetics. 2016;15(6):25-30. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2016-6-25-30

Views: 758


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)