Preview

Medical Genetics

Advanced search

ROLE OF MICRORNAS IN ETIOLOGY, PATHOGENESIS, DIAGNOSIS AND TREATMENT OF STROKE

https://doi.org/10.1234/XXXX-XXXX-2015-1-3-12

Abstract

Stroke, that is one of the leading causes of death and disability in the world, is a multifactorial disease. It develops due to interaction of environmental factors and genetic predisposition, which structure and mechanisms are intensively studied. The most common type of stroke is the ischemic stroke. One of the new approaches in the study of stroke pathogenesis is researching microRNAs expression profiles. MicroRNAs are short noncoding RNAs that play an important role in the regulation of gene expression at the transcriptional and post-transcriptional levels. This review shows the significant role of microRNAs in stroke's etiology, pathogenesis, diagnostics and treatment. In stroke etiology, microRNAs, changing their expression profile, modulate the pathogenic mechanisms of atherosclerosis, hyperlipidemia, arterial hypertension, diabetes and plaque rupture. MicroRNAs can modify clinical aspects and clinical outcome by the influence on basic pathogenic mechanisms of ischemic brain damage (apoptosis, inflammation, brain edema). MicroRNAs may serve as biomarkers of stroke allowing to determine the type of stroke or the severity of brain damage, and they also could be used in the stroke treatment.

 

About the Authors

I. S. Zhanin
Federal State Budgetary Institution «Scientific Centre of Children's Health» under the Russian Academy of Medical Sciences; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
Russian Federation


A.. Y Asanov
I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation
Russian Federation


V. G. Pinelis
Federal State Budgetary Institution «Scientific Centre of Children's Health» under the Russian Academy of Medical Sciences
Russian Federation


References

1. Adams H.P. et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment // Stroke. — 1993. — Vol. 24, №1. — P. 35—41.

2. Bauernfeind F. et al. NLRP3 inflammasome activity is negatively controlled by miR-223 // J. Immunol. — 2012. — Vol. 189, №8. — P. 4175—4181.

3. Cheng C. et al. The Role of Shear Stress in Atherosclerosis: Action Through Gene Expression and Inflammation? // Cell Bioc-hem. Biophys. — 2004. — Vol. 41, №2. — P. 279—294.

4. Cheng L.-C. et al. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche // Nat. Neurosci. 2009. — Vol. 12, №4. — P. 399—408.

5. Chiang H.R. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes // Genes Dev. — 2010. — Vol. 24, №10. — P. 992—1009.

6. Cogswell J.P. et al. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways // J. Alzheimers. Dis. — 2008. — Vol. 14, №1. — P. 27—41.

7. Czech B., Hannon G.J. Small RNA sorting: matchmaking for Argonautes // Nat. Rev. Genet. — 2011. — Vol. 12, №1. — P. 19—31.

8. Dentelli P. et al. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression // Arterioscler. Thromb. Vasc. Biol. — 2010. — Vol. 30, №8. — P. 1562—1568.

9. Dharap A. et al. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome // J. Cereb. Blood Flow Metab. — 2009. — Vol. 29, №4. — P. 675—687.

10. Ebert M.S., Neilson J.R., Sharp P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells // Nat. Methods. — 2007. — Vol. 4, №9. — P. 721—726.

11. Eulalio A. et al. Deadenylation is a widespread effect of miRNA regulation // RNA. — 2009. — Vol. 15, №1. — P. 21—32.

12. Faller M., Guo F. MicroRNA biogenesis: there’s more than one way to skin a cat // Biochim. Biophys. Acta. — 2008. — Vol. 1779, №11. — P. 663—667.

13. Feng Y., Fratkin J.D., LeBlanc M.H. Inhibiting caspase-9 after injury reduces hypoxic ischemic neuronal injury in the cortex in the newborn rat // Neurosci. Lett. — 2003. — Vol. 344, №3. — P. 201—204.

14. Gabriely G. et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators // Mol. Cell. Biol. — 2008. — Vol. 28, №17. — P. 5369—80.

15. Gan C.S., Wang C.W., Tan K.S. Circulatory microRNA-145 expression is increased in cerebral ischemia // Genet. Mol. Res. — 2012. — Vol. 11, №1. — P. 147—152.

16. Giffard R.G. et al. Regulation of apoptotic and inflammatory cell signaling in cerebral ischemia: the complex roles of heat shock protein 70 // Anesthesiology. — 2008. — Vol. 109, №2. — P. 339—348.

17. Graham E.M. et al. Neonatal mice lacking functional Fas death receptors are resistant to hypoxic-ischemic brain injury // Ne-urobiol. Dis. — 2004. — Vol. 17, №1. — P. 89—98.

18. Gusar V.A. et al. miRNA expression profiling in cortical neurons under conditions of transient focal ischemia // Eur. J. humam Genet. — 2013. — Vol. 21. — P. 217.

19. Harraz M.M. et al. MicroRNA-223 is neuroprotective by targeting glutamate receptors // Proc. Natl. Acad. Sci. U.S.A. — 2012. — Vol. 109, №46. — P. 18962—18967.

20. Harris T.A. et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1 // Proc. Natl. Acad. Sci. U.S.A. — 2008. — Vol. 105, №5. — P. 1516—1521.

21. Haver V.G. et al. Rupture of vulnerable atherosclerotic plaques: microRNAs conducting the orchestra? // Trends Cardiovasc. Med. — 2010. — Vol. 20, №2. — P. 65—71.

22. Hsu S.-D. et al. miRNAMap 2.0: genomic maps of microR-NAs in metazoan genomes // Nucleic Acids Res. 2008. — Vol. 36, №Database issue. — P. D165-9.

23. Huang J., Upadhyay U.M., Tamargo R.J. Inflammation in stroke and focal cerebral ischemia // Surg. Neurol. — 2006. — Vol. 66, №3. — P. 232—245.

24. Jeyaseelan K., Lim K.Y., Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion // Stroke. — 2008. — Vol. 39, №3. — P. 959—966.

25. Ji R. et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation // Circ. Res. — 2007. — Vol. 100, №11. — P. 1579—1588.

26. Jin R., Yang G., Li G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator // Neurobiol. Dis. — 2010. — Vol. 38, №3. — P. 376—385.

27. Kahle K.T. et al. Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport // Physiology (Bethesda). — 2009. — Vol. 24, №4. — P. 257—265.

28. Kalani A. et al. Role of microRNA29b in blood-brain barrier dysfunction during hyperhomocysteinemia: an epigenetic mechanism // J. Cereb. Blood Flow Metab. — 2014. — Vol. 34, №7. — P. 1212—1222.

29. Kozomara A., Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data // Nucleic Acids Res. — 2014. — Vol. 42, №Database issue. — P. D68—73.

30. Krutzfeldt J. et al. Silencing of microRNAs in vivo with «an-tagomirs» // Nature. — 2005. — Vol. 438, №7068. — P. 685—689.

31. Kuhn C.-D., Joshua-Tor L. Eukaryotic Argonautes come into focus // Trends Biochem. Sci. — 2013. — Vol. 38, №5. — P. 263—271.

32. Kuhn C.-D., Joshua-Tor L. Eukaryotic Argonautes come into focus // Trends Biochem. Sci. — 2013. — Vol. 38, №5. — P. 263—271.

33. Kumar P. et al. Transvascular delivery of small interfering RNA to the central nervous system // Nature. — 2007. — Vol. 448, №7149. — P. 39—43.

34. Lee Y. et al. MicroRNA genes are transcribed by RNA polymerase II // EMBO J. — 2004. — Vol. 23, №20. — P. 4051—4060.’

35. Li W.Y. et al. Circulating microRNAs as potential non-inva-sive biomarkers for the early detection of hypertension-related stroke // J. Hum. Hypertens. — 2014. — Vol. 28, №5. — P. 288—291.

36. Li Y. et al. MicroRNA: Not Far from Clinical Application in Ischemic Stroke // ISRN Stroke. — 2013. — Vol. 2013. — P. 1—7.

37. Lim K.-Y. et al. MicroRNAs in Cerebral Ischemia // Transl. Stroke Res. — 2010. — Vol. 1, №4. — P. 287—303.

38. Liu X.S. et al. MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke // J. Biol. Chem. — 2013. — Vol. 288, №18. — P. 12478—12488.

39. Long G. et al. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans // BMC Neurol. — 2013. — Vol. 13. — P. 178.

40. Lopez-Ramirez M.A. et al. MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation // FASEB J. — 2014. — Vol. 28, №6. — P. 2551—2565.

41. Martin M.M. et al. The human angiotensin II type 1 receptor + 1166 A/C polymorphism attenuates microRNA-155 binding // J. Biol. Chem. — 2007. — Vol. 282, №33. — P. 24262—24269.

42. Mitchell P.S. et al. Circulating microRNAs as stable blood-based markers for cancer detection // Proc. Natl. Acad. Sci. U.S.A. — 2008. — Vol. 105, №30. — P. 10513—10518.

43. Nemenoff R.A. et al. Targeted deletion of PTEN in smooth muscle cells results in vascular remodeling and recruitment of progenitor cells through induction of stromal cell-derived fac-tor-1alpha // Circ. Res. — 2008. — Vol. 102, №9. -P. 1036—1045.

44. Niu W., Qi Y. Association of the angiotensin II type I receptor gene +1166 A>C polymorphism with hypertension risk: evidence from a meta-analysis of 16474 subjects // Hypertens. Res. — 2010. — Vol. 33, №11. — P. 1137—1143.

45. Novаk J. et al. MicroRNAs involved in the lipid metabolism and their possible implications for atherosclerosis development and treatment // Mediators Inflamm. — 2014. — Vol. 2014. — P. 275867.

46. Ouyang Y.-B. et al. miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo // Neurobiol. Dis. — 2012. — Vol. 45, №1. — P. 555—563.

47. Ouyang Y.-B. et al. microRNAs: innovative targets for cerebral ischemia and stroke // Curr. Drug Targets. — 2013. — Vol. 14, №1. — P. 90—101.

48. Place R.F. et al. MicroRNA-373 induces expression of genes with complementary promoter sequences // Proc. Natl. Acad. Sci. U.S.A. — 2008. — Vol. 105, №5. — P. 1608—1613.

49. Portnoy V. et al. Small RNA and transcriptional upregulati-on // Wiley Interdiscip. Rev. RNA. — 2011. — Vol. 2, №5. — P. 748—760.

50. Rayner K.J. et al. MiR-33 contributes to the regulation of cholesterol homeostasis // Science. — 2010. — Vol. 328, №5985. — P. 1570—1573.

51. Rink C., Khanna S. MicroRNA in ischemic stroke etiology and pathology // Physiol. Genomics. — 2011. — Vol. 43, №10. — P. 521—528.

52. Rooij E. van, Kauppinen S. Development of microRNA therapeutics is coming of age // EMBO Mol. Med. — 2014. — Vol. 6, №7. — P. 851—864.

53. Sattler R., Tymianski M. Molecular mechanisms of calcium-dependent excitotoxicity // J. Mol. Med. (Berl.). — 2000. — Vol. 78, №1. — P. 3—13.

54. Schickel R. et al. miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1 // Mol. Cell. — 2010. — Vol. 38, №6. — P. 908—915.

55. Sepramaniam S. et al. Circulating microRNAs as biomarkers of acute stroke // Int. J. Mol. Sci. — 2014. — Vol. 15, №1. — P. 1418—1432.

56. Shi G. et al. Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury // Exp. brain Res. — 2012. — Vol. 216, №2. — P. 225—230.

57. Song Y. et al. MicroRNA-9 inhibits vasculogenic mimicry of glioma cell lines by suppressing Stathmin expression // J. Neuroon-col. — 2013. — Vol. 115, №3. — P. 381—390.

58. Tabet F. et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells // Nat. Commun. — 2014. — Vol. 5. — P. 3292.

59. Tan J.R. et al. microRNAs in stroke pathogenesis // Curr. Mol. Med. — 2011. — Vol. 11, №2. — P. 76—92.

60. Tan Y. et al. Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells // BMC Mol. Biol. — 2009. — Vol. 10, №1. — P. 12.

61. Tsang W.P., Kwok T.T. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3 // Apoptosis. — 2008. — Vol. 13, №10. — P. 1215—1222.

62. Vasudevan S. Posttranscriptional upregulation by microRNAs // Wiley Interdiscip. Rev. RNA. — 2012. — Vol. 3, №3. — P. 311—330.

63. Volvert M.-L. et al. MicroRNAs tune cerebral cortical neurogenesis // Cell Death Differ. — 2012. — Vol. 19, №10. — P. 1573—1581.

64. Wagoner N.J. Van, Benveniste E.N. Interleukin-6 expression and regulation in astrocytes // J. Neuroimmunol. — 1999. — Vol. 100, №1—2. — P. 124—139.

65. Wang B. et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3 // Oncogene. — 2010. — Vol. 29, №12. — P. 1787—1797.

66. Wang F. et al. MiRNA-181c inhibits EGFR-signaling-de-pendent MMP9 activation via suppressing Akt phosphorylation in glioblastoma // Tumour Biol. — 2014.

67. Wang N. et al. MiR-21 down-regulation suppresses cell growth, invasion and induces cell apoptosis by targeting FASL,n TIMP3, and RECK genes in esophageal carcinoma // Dig. Dis. Sci. — 2013. — Vol. 58, №7. — P. 1863—1870.

68. Wang X. et al. Developmental shift of cyclophilin D contribution to hypoxic-ischemic brain injury // J. Neurosci. — 2009. — Vol. 29, №8. — P. 2588—2596.

69. Wang Y. et al. Increase of circulating miR-223 and insulin-like growth factor-1 is associated with the pathogenesis of acute ischemic stroke in patients // BMC Neurol. — 2014. — Vol. 14. — P. 77.

70. Weber M. et al. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity // Bioc-hem. Biophys. Res. Commun. — 2010. — Vol. 393, №4. — P. 643—648.

71. West T., Atzeva M., Holtzman D.M. Caspase-3 deficiency during development increases vulnerability to hypoxic-ischemic injury through caspase-3-independent pathways // Neurobiol. Dis. — 2006. — Vol. 22, №3. — P. 523—537.

72. WHO. Информационный бюллетень: 10 ведущих причин смерти в мире [Электронный ресурс]. URL: http://www.who.int/mediacentre/ factsheets/fs310/ru/index1.html (дата обращения: 20.07.2014).

73. Winter J. et al. Many roads to maturity: microRNA biogenesis pathways and their regulation // Nat. Cell Biol. — 2009. — Vol. 11, №3. — P. 228—234.

74. Yang J.-S., Lai E.C. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants // Mol. Cell.

75. — 2011. — Vol. 43, №6. — P. 892—903.

76. Yin K.-J. et al. miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia // Neurobiol. Dis. —2010. — Vol. 38, №1. — P. 17—26.

77. Yin K.-J., Hamblin M., Chen Y.E. Non-coding RNAs in cerebral endothelial pathophysiology: Emerging roles in stroke // Neu-rochem. Int. — 2014.

78. Zampetaki A. et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes // Circ. Res. — 2010. — Vol. 107, №6. — P. 810—817.

79. Zhao H. et al. MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation // Stroke. — 2013. — Vol. 44, №6. — P. 1706—1713.


Review

For citations:


Zhanin I.S., Asanov A.Y., Pinelis V.G. ROLE OF MICRORNAS IN ETIOLOGY, PATHOGENESIS, DIAGNOSIS AND TREATMENT OF STROKE. Medical Genetics. 2015;14(1):3-12. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2015-1-3-12

Views: 946


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)