Preview

Medical Genetics

Advanced search

Epigenetics of osteoporosis

https://doi.org/10.25557/2073-7998.2018.06.3-10

Abstract

Bone tissue is a continuous remodeling system, which is regulated by complex processes of genetic and epigenetic control. Both the first and the second system in osteoporosis, as a rule, have a diversity changes, but epigenetic aspects of this disease is the least understood and it present of great interest from the viewpoint of osteoporosis studying. In this review, we systematized and generalized information about the results of research the study of epigenetic regulation of the central signaling pathways and genes in bone remodeling.

About the Authors

B. I. Yalaev
Institute of Biochemistry and Genetics
Russian Federation


R. I. Khusainova
Institute of Biochemistry and Genetics
Russian Federation


References

1. Bernabei R., Martone A.M., Ortolani E. et al. Screening, diagnosis and treatment of osteoporosis: a brief review. Clinical cases in mineral and bone metabolism. 2014; 11(3): 201-207.

2. Капланова З.А., Шамов И.М., Сутаева Т.Р. Стоматологические пациенты и факторы риска остеопороза у них. Известия Дагестанского государственного педагогического университета. 2015; №2: 83-85.

3. Заигрова Н.К., Урьясьев О.М., Шаханов А.В. и др. Возможности инструмента FRAX в диагностике остеопороза. Российский медико-биологический вестник имени И.П. Павлова. 2017; 25(1): 62-68.

4. Sozen T., Ozisik L., Basaran N.G. An overview and management of osteoporosis. European Journal of Rheumatology. 2017; 4(1): 46-56.

5. Kanis J.A., McCloskey E.V., Johansson H. et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporosis International. 2013; 24(1): 23-57.

6. Karasik D., Rivadeneira F., Johnson M.L. The genetics of bone mass and susceptibility to bone diseases. Nature Reviews Rheumatology. 2016; 12(6): 323-34.

7. Francesca M., Luisella C., Maria L.B. Epigenetics mechanisms in bone biliogy and osteoporosis: can they drive therapeutic choises? International Journal of Molecular Sciences. 2016; 17(8): 1-19.

8. Хусаинова Р.И., Хуснутдинова Э.К. Генетика остеопороза. Уфа: Гилем, 2015. 392 с.

9. Herzog W. Epigenetic Regulation of Bone Remodeling and Its Impacts in Osteoporosis. International Journal of Molecular Sciences. 2016; 17 (9): 1446.

10. Бадалов Н.Г., Кончугова Т.В., Марченкова Л.А. и др. Роль немедикаментозных методов в комплексе мероприятий по профилактике и лечению остеопороза (обзор литературы). Современная ревматология. 2016; 10(3): 62-68.

11. Руденко Э.В. Остеопороз: диагностика, лечение и профилактика. Минск: Белорусская наука, 2001. 153 с.

12. Cosman F., S.J. de Beur, LeBoff M.S. et al. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporosis International. 2015; 25(10): 2359-2381.

13. Гельцер Б.И., Кочеткова Е.А., Бубнов О.Ю. и др. Генетика остеопороза: современный взгляд на проблему (обзор литературы). Бюллетень Восточно-Сибирского научного центра Сибирского отделения Российской Академии медицинских наук. 2005; 42(4): 171-173.

14. Yong-Jun L., Zhang L., Papasian C.J., Hong-Wen D. Genome-wide Association Studies for Osteoporosis: A 2013 Update. Journal of bone metabolism. 2014; 21(2): 9-116.

15. Xie P., Liu B., Lianming Z. et al. Association of COL1A1 polymorphisms with osteoporosis: a meta-analysis of clinical studies. International Journal of Clinical and Experimental Medicine. 2015; 8(9): 14764-14781.

16. Dytfeld J., Marcinkowska M., Drweska-Matelska N. et al. Association analysis of the COL1A1 polymorphism with bone mineral density and prevalent fractures in Polish postmenopausal women with osteoporosis. Archives of Medical Science. 2016; 12(2): 288-294.

17. Beom-Jun K., Seong H.A., Hyeon-Mok K. et al. Replication of Caucasian Loci Associated with Osteoporosis-related Traits in East Asians. Journal of Bone Metabolism. 2016; 23(4): 233-242.

18. Luo L., Xia W., Nie M. el al. Association of ESR1 and C6orf97 gene polymorphism with osteoporosis in postmenopausal women. Molecular Biology Reports. 2014; 41(5): 3235-3245.

19. Gong G. The association of bone mineral density with vitamin D receptor gene polymorphisms. Osteoporosis International. 1999; 9: 55-64.

20. Liu J.M., Zhao H.Y., Ning G. et al. IGF-1 as an early marker for low bone mass or osteoporosis in premenopausal and postmenopausal women. Journal of Bone Miner Metabolism. 2008; 26(2): 156-164.

21. Wen-Feng L., Shu-Xun H., Bin Y. et al. Genetics of Osteoporosis: Perspectives for Personalized Medicine. Personalized Medicine. 2010; 7(6): 655-668.

22. Huang S., Cheung-Toa G.N., You-Qiuang Genetic Disorders Associated with Osteoporosis. InTech, 2015. 208 p.

23. Гребенникова Т.А., Белая Ж.Е., Рожинская Л.Я. и др. Эпигенетические аспекты остеопороза. Вестник РАМН. 2015; 70(5): 541-548.

24. Tang P., Xiong Q., Ge W., Zhang L. The role of MicroRNAs in Osteoclasts and Osteoporosis. RNA Biology. 2014; 11(11): 1355-1363.

25. Hsu Y., Kiel D.P. Genome-Wide Association Studies of Skeletal Phenotypes: What We Have Learned and Where We Are Headed. The Journal of Clinical Endocrinology and Metabolism. 2012; 97(10): E1958-E1977.

26. McGee-Lawrence M. E., Westendorf J.J. Histone Deacetylases in Skeletal Development and Bone Mass Maintenance. Gene. 2011; 474(1-2): 1-11.

27. Cohen-Kfir E., Artsi H., Levin A., Abramowitz E. et al. Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin, a bone formation inhibitor. Endocrinology. 2011; 152: 4514-4524.

28. Дыдыкина И.С., Веткова Е.С. Склеростин и его роль в регуляции метаболизма костной ткани. Научно-практическая ревматология. 2013; 51(3): 296-301.

29. Nakamura T., Kukita T., Shobuike T., et al. Inhibition of histone deacetylase suppresses osteoclastogenesis and bone destruction by inducing IFN production. Journal of Immunology. 2005; 175(9): 5809-5816.

30. Takada Y. Suberoylanilide Hydroxamic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing nuclear factor B activation. The Journal of Biological Chemistry. 2005; 281(9): 5612-5622.

31. Kim H., Lee J., Jin W. et al. MS-275, a benzamide histone deacetylase inhibitor, prevents osteoclastogenesis by down-regulating c-Fos expression and suppresses bone loss in mice. European Journal of Pharmacology. 2012; 691(1-3): 69-76.

32. Rojas A., Aguilar R., Henriquez B. et al. Epigenetic Control of the Bone-master Runx2 Gene during Osteoblast-lineage Commitment by the Histone Demethylase JARID1B/KDM5B. Journal of Biology Chemisrty. 2015; 290(47): 28329-28342.

33. Lee H.W., Suh J.H., Kim A.Y et al. Histone deacetylase 1-mediated histone modification regulates osteoblast differentiation. Journal of Molecular Endocrinology. 2006; 20(10): 2432-2443.

34. Del R. A., Perez-Campo F.M., Fernandez A.F. et al. Differential analysis of genome-wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis. Epigenetics. 2017; 12(2):113-122.

35. Delgado-Calle J., Sanudo C., Bolado A. et al. DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. Journal of Bone Miner Research. 2012; 27(4): 926-937.

36. Arnsdorf E.J., Tummala P., Castillo A.B. et al. The epigenetic mechanism of mechanically induced osteogenic differentiation. The Journal of Biochemistry. 2010; 43(15): 2881-2886.

37. Delgado-Calle J., Sanudo C., Fernandez A.F. et al. Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics. 2012; 7(1): 83-91.

38. ENCODE Project Consortium: The ENCODE (ENCyclopedia Of DNA Elements) Project. Science. 2004; 306(5696): 636-640.

39. Kung J.T.Y., Coloqnori D., Lee J.T. Long Noncoding RNAs: Past, Present, and Future. Genetics. 2013; 193(3): 651-669.

40. Peschansky V.J., Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics. 2014; 9(1): 3-12.

41. Garmilla-Ezquerra P., Sanudo C., Delgado-Calle J. et al. Analysis of the bone microRNome in osteoporotic fractures. Calcified Tissue International. 2015; 96(1): 30-37.

42. Chen J., Qiu M., Dou C. et al. MicroRNAs in Bone Balance and Osteoporosis. Drug Development Research. 2015; 76(5): 235-245.

43. Eskildsen T., Taipaleenmaki H., Stenvang J. et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proceedings of the National Academy of Sciences. 2011; 108(15): 6139-6144.

44. Grunhagen J., Bhushan R., Degenkolbe E. MiR-497~195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. Journal of Bone and Mineral Research. 2015; 30(5): 796-808.

45. Huang S., Wang S., Bian C. et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells and Development. 2012; 21(13): 2531-2540.

46. Shi C., Qi J., Huang P. et al. MicroRNA-17/20a inhibits glucocorticoid-induced osteoclast differentiation and function through targeting RANKL expression in osteoblast cells. Bone. 2014; 68: 67-75.

47. Zhao C., Sun W., Zhang P. et al. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA biology. 2015; 12(3): 343-353.

48. Vimalraj S., Partridge N.C., Selvamurugan N. A positive role of microRNA-15b on regulation of osteoblast differentiation. Journal of Cellular Physiology. 2014; 229(9): 1236-1244.

49. Wang T., Xu Z. MiR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochemical and Biophysical Research Communications. 2010; 402(2): 186-189.

50. Hu W., Ye Y., Zhang W. et al. MiR-142 3p promotes osteoblast differentiation by modulating Wnt signaling. Molecular Medicine Reports. 2013; 7(2): 689-693.

51. Neha S.D., Anne M.D. MicroRNA variants as genetic determinants of bone mass. Bone. 2016; 84: 57-68.

52. Gulyaeva L.F., Kushlinskiy N. E. Regulatory mechanisms of microRNA expression. Journal of Translational Medicine. 2016; 14: 143.

53. Okamura K., Liu N., Lai E.C. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Molecualt Cell. 2009; 36(3): 431-444.

54. Bartel B. MicroRNAs directing siRNA biogenesis. Natural Structure Molecular Biology. 2005; 12(7): 569-571.

55. Cipollini M, Landi S, Gemignani F. MicroRNA binding site polymorphisms as biomarkers in cancer management and research. Pharmgenomics Personal Medicine. 2014; 7: 173-191.

56. Tye C.E., Gordon J.A., Martin-Buley L.A. et al. Could lncRNAs be the missing links in control of mesenchymal stem cell differentiation? Journal of Cell Physiology. 2015; 230(3): 526-534.

57. Tae-Keun A., Jung-Oh K., Hemant K. et al. Polymorphisms of miR-146a, miR-149, miR-196a2, and miR-499 are associated with osteoporotic vertebral compression fractures in Korean postmenopausal women. Journal of Orthopaedic Research. 2017: 1-10.

58. Jia F., Sun R., Li J. et al. Interactions of Pri-miRNA-34b/c and TP53 Polymorphisms on the Risk of Osteoporosis. Genetic Testing and Molecular Biomarkers. 2016; 20(7): 398-401.

59. Shu-Feng L., Christopher J. P., Hong-Wen Deng Polymorphisms in Predicted miRNA Binding Sites and Osteoporosis // Journal of Bone and Mineral Research. 2011. 26(1): 72-78.


Review

For citations:


Yalaev B.I., Khusainova R.I. Epigenetics of osteoporosis. Medical Genetics. 2018;17(6):3-10. (In Russ.) https://doi.org/10.25557/2073-7998.2018.06.3-10

Views: 561


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)