Preview

Медицинская генетика

Расширенный поиск

Эпигенетика остеопороза

https://doi.org/10.25557/2073-7998.2018.06.3-10

Полный текст:

Аннотация

Костная ткань человека представляет собой систему непрерывного ремоделирования, которая регулируется сложными процессами генетического и эпигенетического контроля. Как первая, так и вторая системы, как правило, при остеопорозе подвержены самым разнообразным изменениям, однако эпигенетические аспекты данного заболевания изучены меньше всего и представляют большой интерес с точки зрения исследования механизмов патогенеза заболевания. В этом обзоре мы систематизировали и обобщили информацию о результатах исследований в области изучения эпигенетической регуляции сигнальных и метаболических путей, а также костного ремоделирования.

Об авторах

Б. И. Ялаев
ФГБУН Институт биохимии и генетики УНЦ РАН
Россия


Р. И. Хусаинова
ФГБУН Институт биохимии и генетики УНЦ РАН
Россия


Список литературы

1. Bernabei R., Martone A.M., Ortolani E. et al. Screening, diagnosis and treatment of osteoporosis: a brief review. Clinical cases in mineral and bone metabolism. 2014; 11(3): 201-207.

2. Капланова З.А., Шамов И.М., Сутаева Т.Р. Стоматологические пациенты и факторы риска остеопороза у них. Известия Дагестанского государственного педагогического университета. 2015; №2: 83-85.

3. Заигрова Н.К., Урьясьев О.М., Шаханов А.В. и др. Возможности инструмента FRAX в диагностике остеопороза. Российский медико-биологический вестник имени И.П. Павлова. 2017; 25(1): 62-68.

4. Sozen T., Ozisik L., Basaran N.G. An overview and management of osteoporosis. European Journal of Rheumatology. 2017; 4(1): 46-56.

5. Kanis J.A., McCloskey E.V., Johansson H. et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporosis International. 2013; 24(1): 23-57.

6. Karasik D., Rivadeneira F., Johnson M.L. The genetics of bone mass and susceptibility to bone diseases. Nature Reviews Rheumatology. 2016; 12(6): 323-34.

7. Francesca M., Luisella C., Maria L.B. Epigenetics mechanisms in bone biliogy and osteoporosis: can they drive therapeutic choises? International Journal of Molecular Sciences. 2016; 17(8): 1-19.

8. Хусаинова Р.И., Хуснутдинова Э.К. Генетика остеопороза. Уфа: Гилем, 2015. 392 с.

9. Herzog W. Epigenetic Regulation of Bone Remodeling and Its Impacts in Osteoporosis. International Journal of Molecular Sciences. 2016; 17 (9): 1446.

10. Бадалов Н.Г., Кончугова Т.В., Марченкова Л.А. и др. Роль немедикаментозных методов в комплексе мероприятий по профилактике и лечению остеопороза (обзор литературы). Современная ревматология. 2016; 10(3): 62-68.

11. Руденко Э.В. Остеопороз: диагностика, лечение и профилактика. Минск: Белорусская наука, 2001. 153 с.

12. Cosman F., S.J. de Beur, LeBoff M.S. et al. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporosis International. 2015; 25(10): 2359-2381.

13. Гельцер Б.И., Кочеткова Е.А., Бубнов О.Ю. и др. Генетика остеопороза: современный взгляд на проблему (обзор литературы). Бюллетень Восточно-Сибирского научного центра Сибирского отделения Российской Академии медицинских наук. 2005; 42(4): 171-173.

14. Yong-Jun L., Zhang L., Papasian C.J., Hong-Wen D. Genome-wide Association Studies for Osteoporosis: A 2013 Update. Journal of bone metabolism. 2014; 21(2): 9-116.

15. Xie P., Liu B., Lianming Z. et al. Association of COL1A1 polymorphisms with osteoporosis: a meta-analysis of clinical studies. International Journal of Clinical and Experimental Medicine. 2015; 8(9): 14764-14781.

16. Dytfeld J., Marcinkowska M., Drweska-Matelska N. et al. Association analysis of the COL1A1 polymorphism with bone mineral density and prevalent fractures in Polish postmenopausal women with osteoporosis. Archives of Medical Science. 2016; 12(2): 288-294.

17. Beom-Jun K., Seong H.A., Hyeon-Mok K. et al. Replication of Caucasian Loci Associated with Osteoporosis-related Traits in East Asians. Journal of Bone Metabolism. 2016; 23(4): 233-242.

18. Luo L., Xia W., Nie M. el al. Association of ESR1 and C6orf97 gene polymorphism with osteoporosis in postmenopausal women. Molecular Biology Reports. 2014; 41(5): 3235-3245.

19. Gong G. The association of bone mineral density with vitamin D receptor gene polymorphisms. Osteoporosis International. 1999; 9: 55-64.

20. Liu J.M., Zhao H.Y., Ning G. et al. IGF-1 as an early marker for low bone mass or osteoporosis in premenopausal and postmenopausal women. Journal of Bone Miner Metabolism. 2008; 26(2): 156-164.

21. Wen-Feng L., Shu-Xun H., Bin Y. et al. Genetics of Osteoporosis: Perspectives for Personalized Medicine. Personalized Medicine. 2010; 7(6): 655-668.

22. Huang S., Cheung-Toa G.N., You-Qiuang Genetic Disorders Associated with Osteoporosis. InTech, 2015. 208 p.

23. Гребенникова Т.А., Белая Ж.Е., Рожинская Л.Я. и др. Эпигенетические аспекты остеопороза. Вестник РАМН. 2015; 70(5): 541-548.

24. Tang P., Xiong Q., Ge W., Zhang L. The role of MicroRNAs in Osteoclasts and Osteoporosis. RNA Biology. 2014; 11(11): 1355-1363.

25. Hsu Y., Kiel D.P. Genome-Wide Association Studies of Skeletal Phenotypes: What We Have Learned and Where We Are Headed. The Journal of Clinical Endocrinology and Metabolism. 2012; 97(10): E1958-E1977.

26. McGee-Lawrence M. E., Westendorf J.J. Histone Deacetylases in Skeletal Development and Bone Mass Maintenance. Gene. 2011; 474(1-2): 1-11.

27. Cohen-Kfir E., Artsi H., Levin A., Abramowitz E. et al. Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin, a bone formation inhibitor. Endocrinology. 2011; 152: 4514-4524.

28. Дыдыкина И.С., Веткова Е.С. Склеростин и его роль в регуляции метаболизма костной ткани. Научно-практическая ревматология. 2013; 51(3): 296-301.

29. Nakamura T., Kukita T., Shobuike T., et al. Inhibition of histone deacetylase suppresses osteoclastogenesis and bone destruction by inducing IFN production. Journal of Immunology. 2005; 175(9): 5809-5816.

30. Takada Y. Suberoylanilide Hydroxamic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing nuclear factor B activation. The Journal of Biological Chemistry. 2005; 281(9): 5612-5622.

31. Kim H., Lee J., Jin W. et al. MS-275, a benzamide histone deacetylase inhibitor, prevents osteoclastogenesis by down-regulating c-Fos expression and suppresses bone loss in mice. European Journal of Pharmacology. 2012; 691(1-3): 69-76.

32. Rojas A., Aguilar R., Henriquez B. et al. Epigenetic Control of the Bone-master Runx2 Gene during Osteoblast-lineage Commitment by the Histone Demethylase JARID1B/KDM5B. Journal of Biology Chemisrty. 2015; 290(47): 28329-28342.

33. Lee H.W., Suh J.H., Kim A.Y et al. Histone deacetylase 1-mediated histone modification regulates osteoblast differentiation. Journal of Molecular Endocrinology. 2006; 20(10): 2432-2443.

34. Del R. A., Perez-Campo F.M., Fernandez A.F. et al. Differential analysis of genome-wide methylation and gene expression in mesenchymal stem cells of patients with fractures and osteoarthritis. Epigenetics. 2017; 12(2):113-122.

35. Delgado-Calle J., Sanudo C., Bolado A. et al. DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. Journal of Bone Miner Research. 2012; 27(4): 926-937.

36. Arnsdorf E.J., Tummala P., Castillo A.B. et al. The epigenetic mechanism of mechanically induced osteogenic differentiation. The Journal of Biochemistry. 2010; 43(15): 2881-2886.

37. Delgado-Calle J., Sanudo C., Fernandez A.F. et al. Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics. 2012; 7(1): 83-91.

38. ENCODE Project Consortium: The ENCODE (ENCyclopedia Of DNA Elements) Project. Science. 2004; 306(5696): 636-640.

39. Kung J.T.Y., Coloqnori D., Lee J.T. Long Noncoding RNAs: Past, Present, and Future. Genetics. 2013; 193(3): 651-669.

40. Peschansky V.J., Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics. 2014; 9(1): 3-12.

41. Garmilla-Ezquerra P., Sanudo C., Delgado-Calle J. et al. Analysis of the bone microRNome in osteoporotic fractures. Calcified Tissue International. 2015; 96(1): 30-37.

42. Chen J., Qiu M., Dou C. et al. MicroRNAs in Bone Balance and Osteoporosis. Drug Development Research. 2015; 76(5): 235-245.

43. Eskildsen T., Taipaleenmaki H., Stenvang J. et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proceedings of the National Academy of Sciences. 2011; 108(15): 6139-6144.

44. Grunhagen J., Bhushan R., Degenkolbe E. MiR-497~195 cluster microRNAs regulate osteoblast differentiation by targeting BMP signaling. Journal of Bone and Mineral Research. 2015; 30(5): 796-808.

45. Huang S., Wang S., Bian C. et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells and Development. 2012; 21(13): 2531-2540.

46. Shi C., Qi J., Huang P. et al. MicroRNA-17/20a inhibits glucocorticoid-induced osteoclast differentiation and function through targeting RANKL expression in osteoblast cells. Bone. 2014; 68: 67-75.

47. Zhao C., Sun W., Zhang P. et al. miR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA biology. 2015; 12(3): 343-353.

48. Vimalraj S., Partridge N.C., Selvamurugan N. A positive role of microRNA-15b on regulation of osteoblast differentiation. Journal of Cellular Physiology. 2014; 229(9): 1236-1244.

49. Wang T., Xu Z. MiR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochemical and Biophysical Research Communications. 2010; 402(2): 186-189.

50. Hu W., Ye Y., Zhang W. et al. MiR-142 3p promotes osteoblast differentiation by modulating Wnt signaling. Molecular Medicine Reports. 2013; 7(2): 689-693.

51. Neha S.D., Anne M.D. MicroRNA variants as genetic determinants of bone mass. Bone. 2016; 84: 57-68.

52. Gulyaeva L.F., Kushlinskiy N. E. Regulatory mechanisms of microRNA expression. Journal of Translational Medicine. 2016; 14: 143.

53. Okamura K., Liu N., Lai E.C. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Molecualt Cell. 2009; 36(3): 431-444.

54. Bartel B. MicroRNAs directing siRNA biogenesis. Natural Structure Molecular Biology. 2005; 12(7): 569-571.

55. Cipollini M, Landi S, Gemignani F. MicroRNA binding site polymorphisms as biomarkers in cancer management and research. Pharmgenomics Personal Medicine. 2014; 7: 173-191.

56. Tye C.E., Gordon J.A., Martin-Buley L.A. et al. Could lncRNAs be the missing links in control of mesenchymal stem cell differentiation? Journal of Cell Physiology. 2015; 230(3): 526-534.

57. Tae-Keun A., Jung-Oh K., Hemant K. et al. Polymorphisms of miR-146a, miR-149, miR-196a2, and miR-499 are associated with osteoporotic vertebral compression fractures in Korean postmenopausal women. Journal of Orthopaedic Research. 2017: 1-10.

58. Jia F., Sun R., Li J. et al. Interactions of Pri-miRNA-34b/c and TP53 Polymorphisms on the Risk of Osteoporosis. Genetic Testing and Molecular Biomarkers. 2016; 20(7): 398-401.

59. Shu-Feng L., Christopher J. P., Hong-Wen Deng Polymorphisms in Predicted miRNA Binding Sites and Osteoporosis // Journal of Bone and Mineral Research. 2011. 26(1): 72-78.


Для цитирования:


Ялаев Б.И., Хусаинова Р.И. Эпигенетика остеопороза. Медицинская генетика. 2018;17(6):3-10. https://doi.org/10.25557/2073-7998.2018.06.3-10

For citation:


Yalaev B.I., Khusainova R.I. Epigenetics of osteoporosis. Medical Genetics. 2018;17(6):3-10. (In Russ.) https://doi.org/10.25557/2073-7998.2018.06.3-10

Просмотров: 63


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)