Preview

Medical Genetics

Advanced search

Therapeutic approaches of the CRISPR/Cas genome editing system for genetic diseases in humans and model animals

https://doi.org/10.25557/2073-7998.2018.05.3-12

Abstract

Since the opening of the CRISPR / Cas genome editing system, this technology has made significant progress thanks to numerous modifications and improvements, coming close to application in clinical medicine. At present, the issue on its use for the treatment of genetic diseases, where the gene causing the disease is known, is on the agenda. With the help of this system, it is supposed to correct the mutant gene in cells taken from the patients themselves with the subsequent introduction of these cells back to the patient, or to correct in situ the mutation directly on the spot in the target gene in patients.

About the Author

V. A. Mglinets
Medical Genetics Research Center
Russian Federation


References

1. Мглинец В.А. Успехи в системе редактирования генома CRISPR/Cas. I. Модификации и улучшение системы// Успехи современной науки. Белгород.

2. Bailus B.J., Pyles B., McAlister M.M., et al. Protein Delivery of an Artificial Transcription Factor Restores Widespread Ube3a Expression in an Angelman Syndrome Mouse Brain// Molec. Therapy. - 2016. -Vol. 24(3). - P. 548-555.

3. Basu S., Adams L., Guhathakurta S. and KimY.-S. A novel tool for monitoring endogenous alpha-synuclein transcription by NanoLuciferase tag insertion at the 3’end using CRISPR-Cas9 genome editing technique// Scientific Reports. 2017. - Vol. 7, Article number: 45883

4. Batra R., DNelles. A., Krach F. et al. Reversal of molecular pathology by RNA-targeting Cas9 in a myotonic dystrophy mouse model// bioRxiv preprint first posted online Sep. 4, 2017; doi: http://dx.doi.org/10.1101/184408

5. Barzel A., Paulk N.K., Shi Y., et al. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice// Nature. - 2015. - Vol. 517. - P. 360-364.

6. Bell S., Peng H., Crapper L., et al. A Rapid Pipeline to Model Rare Neurodevelopmental Disorders with Simultaneous CRISPR/Cas9 Gene Editing// STEM CELLS Translational Medicine. - 2017. - Vol. 6 (3). - P. 886-896.

7. Bordignon C. Twenty-five years of gene therapy for genetic diseases and leukemia: The road to marketing authorization of the first ex vivo gene therapies// Journal of Autoimmunity Available online 16 July 2017

8. Brunger J.M., Zutshi A., Willard V.P., et al. Genome Engineering of Stem Cells for Autonomously Regulated, Closed-Loop Delivery of Biologic Drugs// Stem Cell Reports. - 2017- Vol. 8(5). - P. 1202-1213.

9. Calos M.P. Genome Editing Techniques and Their Therapeutic Applications// Clin.Pharmcol. and Ther. - 2016. - Vol. 101. - Therapeutic Innovations. P. 42-51.

10. Cantore A., Ranzani M., Bartholomae C.C., et al. Liver-directed lentiviral gene therapy in a dog model of hemophilia B// Sci. Transl. Med. - 2015. - Vol. 7. - P. 277ra228

11. Cebrian-Serrano A., Davies B. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools// Mammalian Genome.- 2017 - Vol. 28(7). - P. 247-261.

12. Carroll K. J., Makarewicha C. A., McAnallya J., et al. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9// PNAS. - 2016.- Vol. 113 (2). - P. 338-343.

13. Chakraborty S., Ji H., Kabadi A.M., et al. A CRISPR/Cas9-based system for reprogramming cell lineage specification// Stem Cell Rep. - 2014. - Vol. 3. - P. 940-947.

14. Cicalese, M.P. & Aiuti, A. Clinical applications of gene therapy for primary immunodeficiencies// Hum. Gene Ther. - 2015. - Vol. 26. - P. 210-219.

15. Cong L., Ran F.A., Cox D., et al. Multiplex genome engineering using CRISPR/Cas systems// Science. - 2013. - Vol. 339. P. 819-823.

16. Cooney A.L., Alaiwa M.H.A., Shah V.S., et al. Lentiviral-mediated phenotypic correction of cystic fibrosis pigs// JCI Insight. - 2016. - Vol. 1(14). - P. e88730.

17. Cornu T.I., Mussolino C., Cathomen T. Refining strategies to translate genome editing to the clinic// Nature Med. - 2017. - Vol. 23. - P. 415-423.

18. Cyranoski D. CRISPR gene-editing tested in a person for the first time// Nature. - 2016. - Vol. 535 (7630). - P. 476-477.

19. De Ravin S.S., Li L., Wu X., et al. CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease// Sci. Translational Med. - 2017. - Vol. 9 (372). - P. pii: eaah3480

20. Dow L.E. Modeling Disease In Vivo With CRISPR/Cas9// Trends in Mol. Med. - 2015. - Vol. 21 (10). - P. 609-621.

21. Duroux-Richard I., Giovannangeli C., Apparailly F. CRISPR-Cas9: A revolution in genome editing in rheumatic diseases // Joint Bone Spine. - 2017. - Vol. 84(1) - P. 1-4

22. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus// Sci Rep. - 2013. - Vol.3. - P. 2510.

23. Eyquem J., Mansilla-Soto J., Giavridis T., et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection// Nature. - 2017. - Vol. 543. - P. 113-117.

24. Fogarty N.M.E., McCarthy A., Snijders K.E., et al. Genome editing reveals a role for OCT4 in human embryogenesis// Nature. 2017. - DOI: 10.1038/nature24033

25. Gao X., Tsang J.C.H, Gaba F., et al. Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers// Nucleic Acids Res. - 2014. - Vol. 42. - P. e155-e155.

26. Gao Y., Wu H., Wang Y., et al. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects// Genome Biol. - 2017.- Vol.18 (1). - P. 13

27. Gaudelli N.M., Komor A.C., Rees H.A., et al. Programmable base editing of A-T to G-C in genomic DNA without DNA cleavage// Nature. - 2017. - DOI:10.1038/nature24644

28. Genovese P, Schiroli G, Escobar G. et al. Targeted genome editing in human repopulating haematopoietic stem cells// Nature. - 2014. - Vol.510(7504). - P.235-240.

29. Gilbert L.A., Larson M.H., Morsut L., et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes// Cell. - 2013. - Vol. 154.- P. 442-451.

30. Gonzаlez F. CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish// Dev. Dyn. - 2016. - Vol. 245 (7). - P. 788-806.

31. Guan Y., Ma Y., Li Q., et al. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse// EMBO Mol. Med. - 2016. - Vol. 8 (5). - P. 477-488.

32. Gyorgy B., Sage C., Indzhykulian A.A., et al. Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV// Mol. Therapy. - 2017. - Vol. 25(2). - P. 379-391.

33. Han X., Liu Z., Ma Y., et al. Cas9 Ribonucleoprotein Delivery via Microfluidic Cell-Deformation Chip for Human T-Cell Genome Editing and Immunotherapy// Adv. Biosys. - 2017. - Vol. 1 (1-2). - P. 1600007.

34. Haussecker D. Stacking up CRISPR against RNAi for therapeutic gene inhibition// FEBS J. - 2016. - Vol. 283 (17). - P. 3249-3260.

35. Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A. - 2014. - Vol.111. - P. 11461-6.

36. Hirsch T., Rothoeft T., Teig N., et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature, 2017; DOI: 10.1038/nature24487

37. Huang X., Zhou G., Wu W., et al. Genome editing abrogates angiogenesis in vivo// Nature Communications. - 2017. - Vol. 8 (1) DOI: 10.1038/s41467-017-00140-3

38. Jinek M., East A., Cheng A., et al. RNA-programmed genome editing in human cells// Elife. - 2013. - Vol. 2. - P. e00471.

39. Kalebic N., Taverna E., Tavano S., et al. CRISPR/Cas9-induced disruption of gene expression in mouse embryonic brain and single neural stem cells in vivo// EMBO Rep. - 2016. - V. 17 (3). - P. 338-348.

40. Katayama S., Moriguchi T., Ohtsu N., Kondo T. A Powerful CRISPR/Cas9-Based Method for Targeted Transcriptional Activation// Angew Chem Int Ed Engl. - 2016. - Vol. 55(22). - P. 6452-6456.

41. Kearns NA, Genga RMJ, Enuameh MS, et al. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells// Develop. - 2014. - Vol. 141. - P. 219-223.

42. Keeler G.D., Kumar S., Palaschak B. et al. Gene Therapy-Induced Antigen-Specific Tregs Inhibit Neuro-inflammation and Reverse Disease in a Mouse Model of Multiple Sclerosis// Molecular Therapy. - 2017- DOI: 10.1016/j.ymthe.2017.09.001

43. Kiani S, Chavez A, Tuttle M, et al. Cas9 gRNA engineering for genome editing, activation and repression// Nat Methods. - 2015. - Vol. 12. - P. 1051-1054.

44. Kim E., Koo T., Park S.W., et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni// Nature Communic. - 2017. - Vol. 8. - P. 14500

45. Kim K., Park S.W., Kim J.H., et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration// Genome Res. - 2017. DOI: 10.1101/gr.219089.116 **

46. Kim Y.B., Komor A.C., Levy J.M., et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions// Nat. Biotechnol. - 2017. - Vol. 35(4). - P. 371-376.

47. Konermann S, Brigham MD, Trevino A, et al. Optical control of mammalian endogenous transcription and epigenetic states// Nature. - 2013. - Vol. 500. - P. 472-476.

48. Lee K., Conboy M., Park H.M. , et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair // Nature Biomedical Engineering (2017) doi:10.1038/s41551-017-0137-2

49. Liang P., Xu Y., Zhang X., et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes// Protein & Cell. - 2015. - Vol. 6 (5). -P. 363-372.

50. Liang W-C., Liang P-P., Wong C-W., et al., CRISPR/Cas9 Technology Targeting Fas Gene Protects Mice From Concanavalin-A Induced Fulminant Hepatic Failure// J. Cell. Biochem. - 2017. - Vol. 118(3). - P. 530-536

51. Limsirichai P., Gaj T., Schaffer D.V. CRISPR-mediated activation of latent HIV-1 expression// Mol Ther. - 2016. - Vol. 24. - P. 499-507.

52. Liu, G., Suzuki, K., Qu, J., et al. Targeted Gene Correction of Laminopathy-Associated LMNA Mutations in Patient-Specific iPSC// Cell Stem Cell.- 2011. -Vol. 8 (6).- P. 688-694.

53. Long C., Amoasii L, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy// Science. - 2016. - Vol. 351. - P. 400-403.

54. Loperfido, M., Jarmin S., Dastidar S. et al. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts// Nucl. Acids Res. - 2016.- Vol.44. - P. 744-760.

55. Ma H., Marti-Gutierrez N., Park S.-W., et al. Correction of a pathogenic gene mutation in human embryos. Nature. - 2017. - Vol. 548(7668). - P. 413-419.

56. Mali P., Yang L., Esvelt K.M., et al. RNA-Guided Human Genome Engineering via Cas// Science.- 2013. - Vol. 339. - P. 823-826.

57. Mansilla-Soto, J., Riviere, I., Boulad, F. & Sadelain, M. Cell and gene therapy for the Beta-thalassemias: advances and prospects// Hum. Gene Ther. - 2016. - Vol. 27. - P. 295-304.

58. Matkar P.N., Leong-Poi H. and Singh K.K. Cardiac gene therapy: are we there yet?// Gene Therapy. - 2016. - Vol. 23. - P. 635-648.

59. Molinski S.V., Ahmadi S., Ip W., et al. Orkambi® and amplifier co-therapy improves function from a rare CFTR mutation in gene-edited cells and patient tissue// EMBO Molecular Med. - 2017. - Vol. 9. - P. 1224-1243.

60. Moreno A.M., Mali P. Therapeutic genome engineering via CRISPR-Cas system// Wiley Interdisciplinary Reviews. Systems Biology and Medicine (WIREs) - 2017. - Vol. 9(4). - P. e1380.

61. Nelson C.E. Hakim C.H., Ousterout D.G., et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy// Science. - 2016. - Vol. 351 (6271). - P. 403-407.

62. Okada M., Kanamori M., Someya K. et al. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells// Epigenetics & Chromatin. - 2017. - Vol.10. - P. 24

63. Pan B., Askew C., Galvin A., et al. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c// Nat. Biotechnol. - 2017. - Vol. 35(3). - P. 264-272.

64. Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. - 2013. - Vol. 152. - P. 1173-1183.

65. Ran F.A. Cong L., Yan W.X., et al. In vivo genome editing using Staphylococcus aureus Cas9// Nature. - 2015. - Vol. 520. - P. 186-191.

66. Sakuma T., Masaki K., Abe-Chayama H., et al. Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus// Genes to Cells. - 2016. - Vol. 21 (11). - P. 1253-1262.

67. Schiroli G., Ferrari S., Conway A., et al. Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1// Science Translational Medicine. 2017. - Vol. 9(411), eaan0820.

68. Schwank G., Koo B-K., Sasselli V., et al. Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients// Cell Stem Cell. - 2013. - Vol. 13(6). - P. 653-658.

69. Shi Y., Inoue H., Wu J.C., Yamanaka S. Induced pluripotent stem cell technology: a decade of progress// Nat. Rev. Drug Discovery. - 2017. - Vol. 16. - P.115-130.

70. Simeonov D.R., Gowen B.G., Boontanrart M. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature. - 2017 - Vol. 549. - P. 111-1115.

71. Spragg, C., Feelixge, H.D.S., Jerome, K.R. Cell and gene therapy strategies to eradicate HIV reservoirs.// Current Opinion in HIV and AIDS. - 2016.- Vol. 11 (4). - P. 442-449.

72. Staahl B.T., Benekareddy M., Coulon-Bainier C., et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes// Nat. Biotechnol. - 2017. - Vol. 35(5). - P. 431-434.

73. Su S., Hu B., Shao J., et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients// Sci Rep. - 2016. - Vol. 6. - Article number: 20070.

74. Suzuki K., Tsunekawa Y., Hernandez-Benitez R., et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration// Nature. - 2016. - Vol. 540. - P. 144-149.

75. Tabebordbar M. Zhu K., Cheng J.K., et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells//Science. - 2016. - Vol. 351.- P. 407-411.

76. Tang H., Shrager J.B. CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: a personalized molecular surgical therapy// EMBO Mol. Med. - 2016. - Vol.8 (2). - P.83-85.

77. Tschaharganeh D.F., Lowe S.W., Garippa R.J., Livshits G. Using CRISPR/Cas to study gene function and model disease in vivo// FEBS J. - 2016. - Vol. 283(17). - P.3194-3203.

78. Vojta A., Dobriniс P., Tadiс V., et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation// Nucl. Acids Residues. - 2016.- Vol. 44.- P. 5615-5628.

79. Vora S., Tuttle M., Cheng J., Church G. Next stop for the CRISPR revolution: RNA-guided epigenetic regulators// FEBS J. - 2016. - Vol. 283 (17). - P. 3181-3193.

80. Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9// Cell Stem Cell. - 2013. - Vol.13. - P. 659-62.

81. Wu Y, Zhou H, Fan X, et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells// Cell Res. - 2015. - Vol.25. - P. 67-79.

82. Wykes R.C, Lignani G. Gene therapy and editing: Novel potential treatments for neuronal channelopathies// j. Neuropharm. -2017. - pii: S0028-3908(17)30254-X.

83. Xu L., Park K.H., Zhao L., et al. CRISPR-mediated Genome Editing Restores Dystrophin Expression and Function in mdx Mice// Mol. Therapy. - 2016. - Vol.4(3). - P. 564-569.

84. Yin H, Xue W, Chen S, et al., Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype// Nat Biotechnol. - 2014. - Vol. 32. - P. 551-553.

85. Zarbin M. Cell-Based Therapy for Degenerative Retinal // Trends in Mol.Med. - 2016. - Vol. 22 (2). - P. 115-134.

86. Zhang Y., Long C., Li H., et. al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice// Sci. Adv. - 2017.- Vol. 3(4). - P. e1602814

87. Zhang Y., Yin C., Zhang T., et al. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs// Sci Rep. - 2015. - Vol. 5. - P. 16277.

88. Zhao, C. Farruggio A.P., Bjornson C.R.R. et al. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells// PLoS One. - 2014. -Vol. 9. - P. e96279.

89. Zhou W., Deiters A. Conditional Control of CRISPR/Cas9 Function// Angew Chem. Int. Ed. Engl. - 2016. - Vol. 55(18). - P. 5394-5399.

90. Zhu J., Ming C., Fu X., et al. Gene and mutation independent therapy via CRISPR-Cas9 mediated cellular reprogramming in rod photoreceptors// Cell Research. - 2017. - Vol. 27. - P.830-833.


Review

For citations:


Mglinets V.A. Therapeutic approaches of the CRISPR/Cas genome editing system for genetic diseases in humans and model animals. Medical Genetics. 2018;17(5):3-12. (In Russ.) https://doi.org/10.25557/2073-7998.2018.05.3-12

Views: 909


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)