Preview

Medical Genetics

Advanced search

Mitochondrial DNA polymorphism and cardiovascular continuum diseases

https://doi.org/10.25557/2073-7998.2018.01.9-13

Abstract

Mitochondrial genome, encoding respiratory chain subunits, is characterized by high polymorphism level in human populations. In most studies for susceptibility genes for common diseases, including cardiovascular diseases, the analysis is limited to the nuclear genome. It was shown that particular mtDNA genotypes may differ by oxidative phosphorylation efficiency. Some associations of mtDNA polymorphisms with cardiovascular diseases have been found. According to our results and published data, we suggest that mtDNA effect on cardiovascular system does not manifest in predisposition to cardiovascular diseases themselves but rather in risk of complications and comorbidities in the cardiovascular continuum.

About the Authors

M. V. Golubenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences; Research Institute for Complex Issues of Cardiovascular diseases
Russian Federation


R. R. Salakhov
Research Institute for Complex Issues of Cardiovascular diseases
Russian Federation


T. V. Shumakova
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation


S. V. Buikin
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation


O. A. Makeeva
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation


M. S. Nazarenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University
Russian Federation


V. P. Puzyrev
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences; Siberian State Medical University
Russian Federation


References

1. Dzau VJ, Antman EM, Black HR, et al. The cardiovascular disease continuum validated: clinical evidence of improved patient outcomes: part II: Clinical trial evidence (acute coronary syndromes through renal disease) and future directions. Circulation. 2006;114(25):2871-2891.

2. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661-678.

3. Manolio TA, Collins FS, Cox NJ et al. Finding the missing heritability of complex diseases. Nature. 2009; 461(7265):747-753.

4. Wallace DC. Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013;368(1622):20120267.

5. Pesole G, Allen JF, Lane N, et al. The neglected genome. EMBO Reports. 2012;13(6):473-474.

6. Poulton J, Luan J, Macaulay V, Hennings S, Mitchell J, Wareham NJ. Type 2 diabetes is associated with a common mitochondrial variant: evidence from a population-based case-control study. Hum Mol Genet. 2002;11(13):1581-1583.

7. Saxena R, de Bakker PI, Singer K, et al. Comprehensive association testing of common mitochondrial DNA variation in metabolic disease. Am J Hum Genet. 2006;79(1):54-61.

8. Жейкова ТВ. Генетическая основа регуляции окислительного стресса: связь с продолжительностью жизни и ишемической болезнью сердца. Автореф. Дисс. на сосикание ученой степени канд. мед. наук. Томск, 2013. 24 с.

9. Голубенко МВ, Салахов РР, Макеева ОА, и др. Ассоциации полиморфизма митохондриальной ДНК с инфарктом миокарда и прогностически значимыми признаками атеросклероза. Молекулярная биология. 2015; 49 (6):968-976.

10. Буйкин СВ, Голубенко МВ, Пузырев ВП. Участие «митохондриальных генов» в формировании гипертрофии левого желудочка при артериальной гипертонии. Молекулярная биология. 2010; 44(1):28-32.

11. Салахов РР, Макеева ОА, Кашталап ВВ, Барбараш ОЛ, Голубенко МВ. Ассоциации полиморфизма митохондриального генома с количественными признаками при инфаркте миокарда и сахарном диабете. Медицинская генетика. 2015; 14(10):21-24.

12. Фрейдин МБ, Пузырев ВП, Салюков ВБ, Голубенко МВ. Связь полиморфизма некодирующих областей митохондриального генома человека с изменчивостью уровня артериального давления и величин интервальных оценок ЭКГ. Бюллетень экспериментальной биологии и медицины. 1999; 127(1):82-84.

13. Буйкин СВ, Голубенко МВ, Пузырев ВП. Полиморфизм регуляторного района мтДНК и функционирование сердечно-сосудистой системы у тувинцев. Сибирский консилиум. 2006; 49(2):48-53.

14. Буйкин СВ. Анализ ассоциаций полиморфных вариантов митохондриального генома и гена митохондриальной гамма ДНК-полимеразы с фенотипами сердечно-сосудистой системы. Автореф. дисс. канд. мед. наук. Томск, 2006. 22 с.

15. Мазунин ИО, Володько НВ, Стариковская ЕБ, Сукерник РИ. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010; 44 (5):755-772.

16. Stocchi L, Polidori E, Potenza L, et al. Mutational analysis of mitochondrial DNA in Brugada syndrome. Cardiovascular Pathology. 2016; 25:47-54.

17. Kenney MC, Chwa M, Atilano S, et al. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions. Human Molecular Genetics. 2014;23(13):3537-3551.

18. Kenney MC, Chwa M, Atilano SR, et al. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases. Biochim Biophys Acta. 2014;1842(2):208-219.

19. Mueller EE, Brunner SM, Mayr JA, Stanger O, Sperl W, Kofler B. Functional differences between mitochondrial haplogroup T and haplogroup H in HEK293 cybrid cells. PLoS One. 2012;7(12):e52367.

20. Malik D, Hsu T, Falatoonzadeh P, et al. Human retinal transmitochondrial cybrids with J or H mtDNA haplogroups respond differently to ultraviolet radiation: implications for retinal diseases. PLoS One. 2014;9(2):e99003.

21. Ruiz-Pesini E, Lapena AC, Diez-Sanchez C, et al. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet. 2000;67(3):682-696.

22. Castro MG, Huerta C, Reguero JR, et al. Mitochondrial DNA haplogroups in Spanish patients with hypertrophic cardiomyopathy. Int J Cardiol. 2006;112(2):202-206.

23. Park KS, Chan JC, Chuang LM, et al. Study Group of Molecular Diabetology in Asia. 2008. A mitochondrial DNA variant at position 16189 is associated with type 2 diabetes mellitus in Asians. Diabetologia. 2008;51:602-608.

24. Dunham-Snary KJ, Ballinger SW. Mitochondrial-nuclear DNA mismatch matters. Science. 2015;349:1449-1450.


Review

For citations:


Golubenko M.V., Salakhov R.R., Shumakova T.V., Buikin S.V., Makeeva O.A., Nazarenko M.S., Puzyrev V.P. Mitochondrial DNA polymorphism and cardiovascular continuum diseases. Medical Genetics. 2018;17(1):9-13. (In Russ.) https://doi.org/10.25557/2073-7998.2018.01.9-13

Views: 1142


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)