Preview

Медицинская генетика

Расширенный поиск

Цитогенетические и экспрессионные маркеры индивидуальной радиочувствительности человека

https://doi.org/10.25557/2073-7998.2018.01.3-8

Полный текст:

Аннотация

Воздействие ионизирующего излучения вызывает значительные функциональные изменения в клетках человека, выражающиеся в активации различных сигнальных путей и транскрипционного ответа множества генов. Величина этих изменений вариабельна у разных индивидов, составляя феномен индивидуальной радиочувствительности. В обзоре рассматриваются известные маркеры индивидуальной радиочувствительности человека, начиная от цитогенетических, позволяющих непосредственно оценить эффективность репарации радиационно-индуцированных повреждений ДНК в клетках, до маркеров, выделенных на основании полногеномных и полнотранскриптомных исследований дифференциально экспрессирующихся генов, обусловливающих различные аспекты клеточного и организменного ответа на радиационное воздействие.

Об авторах

С. А. Васильев
ФГБНУ «Томский национальный исследовательский медицинский центр Российской академии наук»
Россия


И. Н. Лебедев
ФГБНУ «Томский национальный исследовательский медицинский центр Российской академии наук»
Россия


Список литературы

1. Barber JB, Burrill W, Spreadborough AR, et al. Relationship between in vitro chromosomal radiosensitivity of peripheral blood lymphocytes and the expression of normal tissue damage following radiotherapy for breast cancer. Radiother Oncol. 2000; 55(2): 179-86.

2. Borgmann K, Roper B, El-Awady R, et al. Indicators of late normal tissue response after radiotherapy for head and neck cancer: fibroblasts, lymphocytes, genetics, DNA repair, and chromosome aberrations. Radiother Oncol. 2002; 64(2): 141-52.

3. Borgmann K, Haeberle D, Doerk T, et al. Genetic determination of chromosomal radiosensitivities in G0- and G2-phase human lymphocytes. Radiother Oncol. 2007; 83(2): 196-202.

4. Fenech M The lymphocyte cytokinesis-block micronucleus cytome assay and its application in radiation biodosimetry. Health Phys. 2010; 98(2): 234-43.

5. Slonina D, Biesaga B, Urbanski K, et al. Comparison of chromosomal radiosensitivity of normal cells with and without HRS-like response and normal tissue reactions in patients with cervix cancer. Int J Radiat Biol. 2008; 84(5): 421-8.

6. Widel M, Jedrus S, Lukaszczyk B, et al. Radiation-induced micronucleus frequency in peripheral blood lymphocytes is correlated with normal tissue damage in patients with cervical carcinoma undergoing radiotherapy. Radiat Res. 2003; 159(6): 713-21.

7. Bekker-Jensen S, Lukas C, Kitagawa R, et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol. 2006; 173(2): 195-206.

8. Sedelnikova OA, Rogakou EP, Panyutin IG, et al. Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. Radiat Res. 2002; 158(4): 486-92.

9. Rothkamm K, Kruger I, Thompson LH, et al. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol. 2003; 23(16): 5706-15.

10. Valdiglesias V, Giunta S, Fenech M, et al. gammaH2AX as a marker of DNA double strand breaks and genomic instability in human population studies. Mutat Res. 2013.

11. Werbrouck J, De Ruyck K, Beels L, et al. Prediction of late normal tissue complications in RT treated gynaecological cancer patients: potential of the gamma-H2AX foci assay and association with chromosomal radiosensitivity. Oncol Rep. 2010; 23(2): 571-8.

12. Brzozowska K, Pinkawa M, Eble MJ, et al. In vivo versus in vitro individual radiosensitivity analysed in healthy donors and in prostate cancer patients with and without severe side effects after radiotherapy. Int J Radiat Biol. 2012; 88(5): 405-13.

13. Васильев СА, Величевская АИ, Вишневская ТВ, и др. Фоновое количество фокусов gH2AX в клетках человека как фактор индивидуальной радиочувствительности. Радиационная биология и радиоэкология. 2015; 55(4): 402-410.

14. Melnikov AA, Vasilyev SA, Musabaeva LI, et al. Cytogenetic effects of neutron therapy in patients with parotid gland tumors and relapse of breast cancer. Experimental oncology. 2012; 34(4): 354-357.

15. Беленко АА, Васильев СА, Лебедев ИН Маркеры индивидуальной радиочувствительности экстраэмбриональных клеток зародышей человека в условиях in vitro. Экологическая генетика. 2015; 13(4): 33-35.

16. Vasireddy RS, Sprung CN, Cempaka NL, et al. H2AX phosphorylation screen of cells from radiosensitive cancer patients reveals a novel DNA double-strand break repair cellular phenotype. Br J Cancer. 2010; 102(10): 1511-8.

17. Greve B, Bolling T, Amler S, et al. Evaluation of different biomarkers to predict individual radiosensitivity in an inter-laboratory comparison-lessons for future studies. PLoS One. 2012; 7(10): e47185.

18. Fleckenstein J, Kuhne M, Seegmuller K, et al. The impact of individual in vivo repair of DNA double-strand breaks on oral mucositis in adjuvant radiotherapy of head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2011; 81(5): 1465-72.

19. Markova E, Somsedikova A, Vasilyev S, et al. DNA repair foci and late apoptosis/necrosis in peripheral blood lymphocytes of breast cancer patients undergoing radiotherapy. Int J Radiat Biol. 2015; 91(12): 934-45.

20. Djuzenova CS, Elsner I, Katzer A, et al. Radiosensitivity in breast cancer assessed by the histone gamma-H2AX and 53BP1 foci. Radiat Oncol. 2013; 8(1): 98.

21. Djuzenova CS, Zimmermann M, Katzer A, et al. A prospective study on histone gamma-H2AX and 53BP1 foci expression in rectal carcinoma patients: correlation with radiation therapy-induced outcome. BMC Cancer. 2015; 15: 856.

22. Klokov D, MacPhail SM, Banath JP, et al. Phosphorylated histone H2AX in relation to cell survival in tumor cells and xenografts exposed to single and fractionated doses of X-rays. Radiother Oncol. 2006; 80(2): 223-9.

23. Belyaev IY Radiation-induced DNA repair foci: spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Mutat Res. 2010; 704(1-3): 132-41.

24. Yoshikawa T, Kashino G, Ono K, et al. Phosphorylated H2AX foci in tumor cells have no correlation with their radiation sensitivities. J Radiat Res (Tokyo). 2009; 50(2): 151-60.

25. Zhao J, Guo Z, Zhang H, et al. The potential value of the neutral comet assay and gammaH2AX foci assay in assessing the radiosensitivity of carbon beam in human tumor cell lines. Radiol Oncol. 2013; 47(3): 247-57.

26. Andreassen CN Can risk of radiotherapy-induced normal tissue complications be predicted from genetic profiles? Acta Oncol. 2005; 44(8): 801-15.

27. Сальникова ЛЕ, Чумаченко АГ, Веснина ИН, и др. Полиморфизм генов репарации и цитогенетические эффекты облучения. Радиационная биология. Радиоэкология. 2010; 50(6): 656-662.

28. Andreassen CN, Alsner J Genetic variants and normal tissue toxicity after radiotherapy: a systematic review. Radiother Oncol. 2009; 92(3): 299-309.

29. West C, Rosenstein BS, Alsner J, et al. Establishment of a Radiogenomics Consortium. Int J Radiat Oncol Biol Phys. 2010; 76(5): 1295-6.

30. Kerns SL, Ostrer H, Stock R, et al. Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2010; 78(5): 1292-300.

31. Kerns SL, Stock RG, Stone NN, et al. Genome-wide association study identifies a region on chromosome 11q14.3 associated with late rectal bleeding following radiation therapy for prostate cancer. Radiother Oncol. 2013; 107(3): 372-6.

32. Fachal L, Gomez-Caamano A, Barnett GC, et al. A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1. Nat Genet. 2014; 46(8): 891-4.

33. Barnett GC, Thompson D, Fachal L, et al. A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity. Radiother Oncol. 2014; 111(2): 178-85.

34. Guo Z, Shu Y, Zhou H, et al. Radiogenomics helps to achieve personalized therapy by evaluating patient responses to radiation treatment. Carcinogenesis. 2015; 36(3): 307-17.

35. Andreassen CN, Schack LM, Laursen LV, et al. Radiogenomics - current status, challenges and future directions. Cancer Lett. 2016; 382(1): 127-136.

36. Surralles J, Jackson SP, Jasin M, et al. Molecular cross-talk among chromosome fragility syndromes. Genes Dev. 2004; 18(12): 1359-70.

37. Chrzanowska KH, Gregorek H, Dembowska-Baginska B, et al. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis. 2012; 7: 13.

38. Amundson SA, Do KT, Shahab S, et al. Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation. Radiat Res. 2000; 154(3): 342-6.

39. Ding LH, Shingyoji M, Chen F, et al. Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses. Radiat Res. 2005; 164(1): 17-26.

40. El-Saghire H, Thierens H, Monsieurs P, et al. Gene set enrichment analysis highlights different gene expression profiles in whole blood samples X-irradiated with low and high doses. Int J Radiat Biol. 2013; 89(8): 628-38.

41. Franco N, Lamartine J, Frouin V, et al. Low-dose exposure to gamma rays induces specific gene regulations in normal human keratinocytes. Radiat Res. 2005; 163(6): 623-35.

42. Kabacik S, Mackay A, Tamber N, et al. Gene expression following ionising radiation: identification of biomarkers for dose estimation and prediction of individual response. Int J Radiat Biol. 2011; 87(2): 115-29.

43. Kang CM, Park KP, Song JE, et al. Possible biomarkers for ionizing radiation exposure in human peripheral blood lymphocytes. Radiat Res. 2003; 159(3): 312-9.

44. Warters RL, Packard AT, Kramer GF, et al. Differential gene expression in primary human skin keratinocytes and fibroblasts in response to ionizing radiation. Radiat Res. 2009; 172(1): 82-95.

45. Amundson SA, Do KT, Vinikoor LC, et al. Integrating global gene expression and radiation survival parameters across the 60 cell lines of the National Cancer Institute Anticancer Drug Screen. Cancer Res. 2008; 68(2): 415-24.

46. Eschrich SA, Fulp WJ, Pawitan Y, et al. Validation of a radiosensitivity molecular signature in breast cancer. Clin Cancer Res. 2012; 18(18): 5134-43.

47. Hall JS, Iype R, Senra J, et al. Investigation of radiosensitivity gene signatures in cancer cell lines. PLoS One. 2014; 9(1): e86329.

48. Kim HS, Kim SC, Kim SJ, et al. Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 cancer cells. BMC Genomics. 2012; 13: 348.

49. Otomo T, Hishii M, Arai H, et al. Microarray analysis of temporal gene responses to ionizing radiation in two glioblastoma cell lines: up-regulation of DNA repair genes. J Radiat Res. 2004; 45(1): 53-60.

50. Tewari D, Monk BJ, Al-Ghazi MS, et al. Gene expression profiling of in vitro radiation resistance in cervical carcinoma: a feasibility study. Gynecol Oncol. 2005; 99(1): 84-91.

51. Torres-Roca JF, Eschrich S, Zhao H, et al. Prediction of radiation sensitivity using a gene expression classifier. Cancer Res. 2005; 65(16): 7169-76.

52. Marchetti F, Coleman MA, Jones IM, et al. Candidate protein biodosimeters of human exposure to ionizing radiation. Int J Radiat Biol. 2006; 82(9): 605-39.

53. Paul S, Amundson SA Development of gene expression signatures for practical radiation biodosimetry. Int J Radiat Oncol Biol Phys. 2008; 71(4): 1236-1244.

54. Eschrich SA, Pramana J, Zhang H, et al. A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation. Int J Radiat Oncol Biol Phys. 2009; 75(2): 489-96.

55. Drukker CA, Elias SG, Nijenhuis MV, et al. Gene expression profiling to predict the risk of locoregional recurrence in breast cancer: a pooled analysis. Breast Cancer Res Treat. 2014; 148(3): 599-613.

56. Tramm T, Mohammed H, Myhre S, et al. Development and validation of a gene profile predicting benefit of postmastectomy radiotherapy in patients with high-risk breast cancer: a study of gene expression in the DBCG82bc cohort. Clin Cancer Res. 2014; 20(20): 5272-80.


Для цитирования:


Васильев С.А., Лебедев И.Н. Цитогенетические и экспрессионные маркеры индивидуальной радиочувствительности человека. Медицинская генетика. 2018;17(1):3-8. https://doi.org/10.25557/2073-7998.2018.01.3-8

For citation:


Vasilyev S.A., Lebedev I.N. Cytogenetic and expression markers of individual human radiosensitivity. Medical Genetics. 2018;17(1):3-8. (In Russ.) https://doi.org/10.25557/2073-7998.2018.01.3-8

Просмотров: 195


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)