Вариабельность генома соматических клеток при многофакторных заболеваниях человека
Аннотация
Об авторах
М. С. НазаренкоРоссия
А. А. Слепцов
Россия
А. В. Марков
Россия
В. П. Пузырев
Россия
Список литературы
1. O’Huallachain M, Karczewski KJ, Weissman SM, Urban AE, Snyder MP. Extensive genetic variation in somatic human tissues. Proc Natl Acad Sci U S A. 2012;109(44):18018-18023. doi:10.1073/pnas.1213736109.
2. Gottlieb B, Beitel LK, Trifiro M. Changing genetic paradigms: creating next-generation genetic databases as tools to understand the emerging complexities of genotype/phenotype relationships. Hum Genomics. 2014;8:9. doi:10.1186/1479-7364-8-9.
3. Forsberg LA, Gisselsson D, Dumanski JP. Mosaicism in health and disease - clones picking up speed. Nat Rev Genet. 2016;18(2):128-142. doi:10.1038/nrg.2016.145.
4. Jaiswal S, Fontanillas P, Flannick J, et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N Engl J Med. 2014;371(26):2488-2498. doi:10.1056/NEJMoa1408617.
5. Jaiswal S, Natarajan P, Silver AJ, et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N Engl J Med. 2017. doi:10.1056/NEJMoa1701719.
6. Fuster JJ, MacLauchlan S, Zuriaga MA, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355(6327):842-847. doi:10.1126/science.aag1381.
7. Girirajan S, Rosenfeld JA, Coe BP, et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med. 2012;367(14):1321-1331. doi:10.1056/NEJMoa1200395.
8. Corral-Debrinski M, Shoffner JM, Lott MT, Wallace DC. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res DNAging. 1992;275(3-6):169-180. doi:10.1016/0921-8734(92)90021-G.
9. Phillips NR, Simpkins JW, Roby RK. Mitochondrial DNA deletions in Alzheimer’s brains: A review. Alzheimer’s Dement. 2014;10(3):393-400. doi:10.1016/j.jalz.2013.04.508.
10. Botto N, Berti S, Manfredi S, et al. Detection of mtDNA with 4977 bp deletion in blood cells and atherosclerotic lesions of patients with coronary artery disease. Mutat Res - Fundam Mol Mech Mutagen. 2005;570(1):81-88. doi:10.1016/j.mrfmmm.2004.10.003.
11. Ross JM, Stewart JB, Hagstrоm E, et al. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature. 2013;501(7467):412-415. doi:10.1038/nature12474.
12. Keogh M, Chinnery PF. Hereditary mtDNA heteroplasmy: A baseline for aging? Cell Metab. 2013;18(4):463-464. doi:10.1016/j.cmet.2013.09.015.
13. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820-823. doi:10.1073/pnas.68.4.820.
14. Happle R. The McCune-Albright syndrome: a lethal gene surviving by mosaicism. Clin Genet. 1986;29(4):321-324. http://www.ncbi.nlm.nih.gov/pubmed/3720010. Accessed October 13, 2016.
15. Happle R. What is paradominant inheritance? J Med Genet. 2009;46(9):648. doi:10.1136/jmg.2009.069336.
16. Пузырев ВП, Назаренко МС, Лебедев ИН, и др. Феномен парадоминантного наследования при атеросклерозе. Медицинская генетика. 2014;10:41-48.
17. Дзизинский АА, Пузырев ВП. Наследственность и атеросклероз. Наука. Новосибирск; 1977.
18. Khera A V., Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18:331-344. doi:10.1038/nrg.2016.160.
19. Nazarenko MS, Sleptcov AA, Lebedev IN, et al. Genomic structural variations for cardiovascular and metabolic comorbidity. Sci Rep. 2017;7:41268. doi:10.1038/srep41268.
20. Слепцов АА, Назаренко МС, Барбараш ОЛ, Пузырев ВП. Вариации числа копий гена ERLIN1 у больных с ишемической болезнью сердца. Медицинская генетика. 2016;15(5):42-44.
21. Feitosa MF, Wojczynski MK, North KE, et al. The ERLIN1-CHUK-CWF19L1 gene cluster influences liver fat deposition and hepatic inflammation in the NHLBI Family Heart Study. Atherosclerosis. 2013;228(1):175-180. doi:10.1016/j.atherosclerosis.2013.01.038.
22. Fernandez AF, Assenov Y, Martin-Subero JI, et al. A DNA methylation fingerprint of 1628 human samples. Genome Res. 2012;22(2):407-419. doi:10.1101/gr.119867.110.
23. Ribel-Madsen R, Fraga MF, Jacobsen S, et al. Genome-Wide Analysis of DNA Methylation Differences in Muscle and Fat from Monozygotic Twins Discordant for Type 2 Diabetes. PLoS One. 2012;7(12). doi:10.1371/journal.pone.0051302.
24. Lokk K, Modhukur V, Rajashekar B, et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 2014;15(4):r54. doi:10.1186/gb-2014-15-4-r54.
25. Guеnard F, Tchernof A, Deshaies Y, et al. Differential methylation in visceral adipose tissue of obese men discordant for metabolic disturbances. Physiol Genomics. 2014;46(6):216-222. doi:10.1152/physiolgenomics.00160.2013.
26. Arner P, Sinha I, Thorell A, Rydеn M, Dahlman-Wright K, Dahlman I. The epigenetic signature of subcutaneous fat cells is linked to altered expression of genes implicated in lipid metabolism in obese women. Clin Epigenetics. 2015;7(1):93. doi:10.1186/s13148-015-0126-9.
27. Crujeiras AB, Diaz-Lagares A, Sandoval J, et al. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients. Sci Rep. 2017;7:41903. doi:10.1038/srep41903.
28. Watson CT, Roussos P, Garg P, et al. Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer’s disease. Genome Med. 2016;8(1):5. doi:10.1186/s13073-015-0258-8.
29. Jo BS, Koh IU, Bae JB, et al. Methylome analysis reveals alterations in DNA methylation in the regulatory regions of left ventricle development genes in human dilated cardiomyopathy. Genomics. 2016;108(2):84-92. doi:10.1016/j.ygeno.2016.07.001.
30. Wang M., Xie H., Shrestha S., et al. Methylation alterations of WT1 and homeobox genes in inflamed muscle biopsy samples from patients with untreated juvenile dermatomyositis suggest self-renewal capacity. Arthritis Rheum. 2012; 64(10):3478-3485. doi: 10.1002/art.34573.
31. Seifert A, Werheid DF, Knapp SM, Tobiasch E. Role of Hox genes in stem cell differentiation. World J Stem Cells. 2015;7(3):583-595. doi:10.4252/wjsc.v7.i3.583.
32. Nazarenko MS, Markov A V., Lebedev IN, et al. A comparison of genome-wide DNA methylation patterns between different vascular tissues from patients with coronary heart disease. PLoS One. 2015;10(4):e0122601. doi:10.1371/journal.pone.0122601.
33. Aavik E, Lumivuori H, Leppаnen O, et al. Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster. Eur Heart J. 2015;36(16):993-1000. doi:10.1093/eurheartj/ehu437.
34. Dаvalos A, Fernаndez-Hernando C. From evolution to revolution: MiRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport. Pharmacol Res. 2013;75:60-72. doi:10.1016/j.phrs.2013.02.005.
35. Leenen FAD, Muller CP, Turner JD. DNA methylation: conducting the orchestra from exposure to phenotype? Clin Epigenetics. 2016;8(1):92. doi:10.1186/s13148-016-0256-8.
Рецензия
Для цитирования:
Назаренко М.С., Слепцов А.А., Марков А.В., Пузырев В.П. Вариабельность генома соматических клеток при многофакторных заболеваниях человека. Медицинская генетика. 2017;16(12):4-8.
For citation:
Nazarenko M.S., Sleptcov A.A., Markov A.V., Puzyrev V.P. Genome variability of somatic cells in human complex diseases. Medical Genetics. 2017;16(12):4-8. (In Russ.)