Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Application of whole-genome sequencing in the diagnosis of spinocerebellar ataxia type 8

https://doi.org/10.25557/2073-7998.2025.10.61-64

Abstract

Spinocerebellar ataxia type 8 (SCA8) is a rare autosomal dominant disorder caused by CTG repeat expansions in ATXN8OS/ATXN8 genes. Diagnosis of SCA8 is challenging due to clinical heterogeneity of hereditary ataxias and limitations of traditional methods. The aim of this work was to evaluate the efficacy of WGS for diagnosing SCA8 and to describe clinical cases. Patients with suspected hereditary ataxia were included. WGS was performed on the DNBSEQ-T7 platform, followed by bioinformatic analysis including STRipy for repeat expansion detection. Three families with pathogenic CTG expansions in ATXN8OS were identified. Results align with published data on variable penetrance and the influence of maternal transmission on phenotypic severity. WGS demonstrated high diagnostic efficacy for SCA8, enabling simultaneous analysis of multiple loci.

About the Authors

T. V. Vizerov
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st, Moscow 115522 



K. G. Zabudskaya
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st, Moscow 115522 



E. A. Melnik
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st, Moscow 115522 



A. S. Kuchina
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st, Moscow 115522 



O. R. Ismagilova
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st, Moscow 115522 



N. S. Beskorovayny
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st, Moscow 115522 



A. V. Polyakov
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st, Moscow 115522 



O. P. Ryzhkova
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st, Moscow 115522 



References

1. Cleary J.D., Subramony S.H., Ranum L.P.W. Spinocerebellar Ataxia Type 8. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025. [Updated 2021 Apr 22]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1268/

2. Brusco A., Cagnoli C., Franco A., et al. Analysis of SCA8 and SCA12 loci in 134 Italian ataxic patients negative for SCA1–3, 6 and 7 CAG expansions. J Neurol. 2002;249(7):923-929. doi:10.1007/s00415-002-0760-y.

3. Zhou Y., Yuan Y., Liu Z., et al. Genetic and clinical analyses of spinocerebellar ataxia type 8 in mainland China. J Neurol. 2019;266(12):2979-2986. doi:10.1007/s00415-019-09519-2.

4. Ikeda Y., Daughters R.S., Ranum L.P. Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. Cerebellum. 2008;7(2):150-158. doi:10.1007/s12311-008-0010-7.

5. Perez B.A., Shorrock H.K., Banez-Coronel M., et al. CCG•CGG interruptions in high-penetrance SCA8 families increase RAN translation and protein toxicity. EMBO Mol Med. 2021;13(11):e14095. doi:10.15252/emmm.202114095.

6. Swaminathan A. Epilepsy in spinocerebellar ataxia type 8: a case report. J Med Case Rep. 2019;13:333. doi:10.1186/s13256-019-2270-x.

7. Kim J.S., Son T.O., Youn J., et al. Non-ataxic phenotypes of SCA8 mimicking amyotrophic lateral sclerosis and Parkinson disease. J Clin Neurol. 2013;9(4):274-279. doi:10.3988/jcn.2013.9.4.274.

8. Nuzhnyi E.P., Abramycheva N.Y., Chkhartishvili I.A., et al. [Spinocerebellar ataxia type 8 in Russian patients]. Zh Nevrol Psikhiatr Im S S Korsakova. 2022;122(8):106-111. doi:10.17116/jnevro2022122081106.

9. Ibañez K., Polke J., Hagelstrom R.T., et al. Whole genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a retrospective diagnostic accuracy and prospective clinical validation study. Lancet Neurol. 2022;21(3):234- 245. doi:10.1016/S1474-4422(21)00462-2.

10. Dolzhenko E., van Vugt J.J.F.A., Shaw R.J., et al. Genome Res. 2017;27(11):1895-1903. doi:10.1101/gr.225672.117.

11. Dolzhenko E., Deshpande V., Schlesinger F., et al. ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics. 2019;35(22):4754-4756. doi:10.1093/bioinformatics/btz431.

12. Halman A., Dolzhenko E., Oshlack A. STRipy: A graphical application for enhanced genotyping of pathogenic short tandem repeats in sequencing data. Hum Mutat. 2022;43(7):859-868. doi:10.1002/humu.24382.

13. [Anonymous]. Tandem repeats in the long-read sequencing era. Nat Rev Genet. 2024;25(7):449. doi:10.1038/s41576-024-00751-9.

14. Mantere T., Kersten S., Hoischen A. Long-read sequencing emerging in medical genetics. Front Genet. 2019;10:426. doi:10.3389/fgene.2019.00426.

15. Beskorovainyy N.S., Beskorovainaya T.S. [NGSData] [Online service]. 2023 [cited 2024 Jul 10]. Available from: http://ngs-data.ru.

16. Felling R.J., Barron T.F. Early onset of ataxia in a child with a pathogenic SCA8 allele. Pediatr Neurol. 2005;33(2):136-138. doi:10.1016/j.pediatrneurol.2005.02.010.


Review

For citations:


Vizerov T.V., Zabudskaya K.G., Melnik E.A., Kuchina A.S., Ismagilova O.R., Beskorovayny N.S., Polyakov A.V., Ryzhkova O.P. Application of whole-genome sequencing in the diagnosis of spinocerebellar ataxia type 8. Medical Genetics. 2025;24(10):61-64. (In Russ.) https://doi.org/10.25557/2073-7998.2025.10.61-64

Views: 24


ISSN 2073-7998 (Print)