Methylmalonic and Propionic Acidemias in the Expanded Newborn Screening Program in the Russian Federation: Evaluation of Diagnostic Performance and Algorithm Optimization
https://doi.org/10.25557/2073-7998.2025.10.16-39
Abstract
Methylmalonic Aciduria (MMA) and propionic aciduria (PA) are rare autosomal recessive disorders of organic acid metabolism. Early diagnosis of these conditions is crucial for the timely initiation of therapy and improved prognosis. Since 2023, the Russian Federation has implemented an expanded newborn screening (NBS) program that includes MMA and PA. Between 2023 and 2024, a total of 2,466,615 newborns were screened. Primary screening using tandem mass spectrometry identified 7,297 neonates at risk for MMA or PA. Confirmatory molecular genetic testing revealed pathogenic or likely pathogenic variants in 28 patients. Of these, 26 newborns were diagnosed with MMA, and 2 newborns were diagnosed with PA. This study established, for the first time, the incidence of MMA and PA in the Russian Federation. The estimated incidence of MMA was 1 in 95,000 newborns (95% CI: 1 in 69,000–1 in 131,000), while the incidence of PA was 1 in 1,234,000 (95% CI: 1 in 409,000–1 in 3,730,000). The positive predictive value (PPV) of the initial screening for MMA and PA was 0.38%. In 38% of MMA patients, the disease manifested during the neonatal period as a metabolic crisis. Previously unreported pathogenic variants were identified in the MMUT, MMAA, MMACHC, and PCCB genes. The implementation of NBS in the Russian Federation has significantly enhanced the early detection of MMA, enabling timely therapeutic intervention. In contrast, the detection rate of PA was lower than expected compared to selective screening data, highlighting the need to optimize primary screening algorithms and confirmatory diagnostic procedures for this disorder. The study also included analysis of the sensitivity and specificity of additional biochemical markers. An optimized confirmatory diagnostic algorithm was proposed to enhance the efficacy of neonatal screening.
About the Authors
P. V. BaranovaRussian Federation
1, Moskvorechye st., Moscow, 115522
M. V. Vasileva
Russian Federation
1, Moskvorechye st., Moscow, 115522
N. V. Bakin
Russian Federation
1, Moskvorechye st., Moscow, 115522
N. V. Moryakova
Russian Federation
Kh. F. Aksyanova
Russian Federation
211, Vaneeva st., Nizhny Novgorod, 603005
A. N. Kolchina
Russian Federation
211, Vaneeva st., Nizhny Novgorod, 603005
T. A. Astakhova
Russian Federation
16, Timiryazev st., Irkutsk, 664003
T. A. Bairova
Russian Federation
16, Timiryazev st., Irkutsk, 664003
G. V. Buyanova
Russian Federation
42a, Blyukher st., Chelyabinsk, 454087
A. I. Pobedinskaya
Russian Federation
42a, Blyukher st., Chelyabinsk, 454087
Z. I. Vafina
Russian Federation
138, Orenburgsky trakt, Kazan, 420064
A. I. Gamzatova
Russian Federation
2, Magomedov st., Makhachkala, 367027
M. V. Gorda
Russian Federation
69, Kievskaya st., Simferopol, 295017
T. T. Dmitrieva
Russian Federation
7, Ordzhonikidze st., Petropavlovsk-Kamchatsky, 683024
E. R. Eremina
Russian Federation
15b, Pirogov st., Ulan-Ude, 670047
24a, Smolina st., Ulan-Ude, 670047
T. N. Kekeeva
Russian Federation
1, Moskvorechye st., Moscow, 115522
1/9, 4th Dobryninsky per., Moscow, 119049
V. S. Lobanova
Russian Federation
1/9, 4th Dobryninsky per., Moscow, 119049
L. N. Kolbasin
Russian Federation
15, Proletarsky av., Surgut, 628405
S. I. Papanov
Russian Federation
15, Proletarsky av., Surgut, 628405
Y. Y. Kotalevskaya
Russian Federation
61/2, Schepkina st., Moscow, 129110
K. Z. Revazyan
Russian Federation
61/2, Schepkina st., Moscow, 129110
D. V. Svetlichnaya
Russian Federation
61/2, Schepkina st., Moscow, 129110
A. A. Kotova
Russian Federation
23, Stepana Razina nab., Tver, 170100
E. M. Kochegurova
Russian Federation
4, Sovetskaya st., Tver, 170100
E. L. Kubekova
Russian Federation
34, Shogenova st., Nalchik, 360032
I. A. Kuzmicheva
Russian Federation
1, building 6, Vishnevsky st., Kaluga, 248007
S. A. Matulevich
Russian Federation
167, 1 May 1 st., Krasnodar, 350086
I. A. Dzemina
Russian Federation
167, 1 May 1 st., Krasnodar, 350086
T. V. Melnikova
Russian Federation
159, Tashkentskaya st., Samara, 443095
M. A. Novik
Russian Federation
145, Kashtanovaya alley, Kaliningrad, 236023
O. S. Omzar
Russian Federation
17, Ulug-Khemskaya st., Kyzyl, 667003
A. O. Dulush
Russian Federation
159A, Oyun Kursedi st., Kyzyl, 667003
O. P. Paveleva
Russian Federation
39, Karbysheva st., Kurgan, 640014
I. V. Potapova
Russian Federation
100, Microrayon Yubileinyi st., Irkutsk, 664078
D. Kh. Saydaeva
Russian Federation
16A, Bulvar Dudaeva st., Grozny, 364068
E. A. Serebryakova
Russian Federation
5A, Tobolskaya st., Saint Petersburg, 194044
E. S. Fedchuk
Russian Federation
135, Gagarin st., Lipetsk, 398050
Y. D. Nazarenko
Russian Federation
1, Moskvorechye st., Moscow, 115522
S. N. Pchelina
Russian Federation
1, Moskvorechye st., Moscow, 115522
1, Orlova roshcha, Gatchina, 188300
6-8, Lev Tolstoy st., Saint Petersburg, 197022
E. Y. Zakharova
Russian Federation
1, Moskvorechye st., Moscow, 115522
References
1. Shibata N., Hasegawa Y., Yamada, K., et al. Diversity in the incidence and spectrum of organic acidemias, fatty acid oxidation disorders, and amino acid disorders in Asian countries: selective screening vs. expanded newborn screening. Molecular genetics and metabolism reports. 2018;16,5-10.
2. Chapman K.A., Gramer G., Viall S., et al. Incidence of maple syrup urine disease, propionic acidemia, and methylmalonic aciduria from newborn screening data. Molecular genetics and metabolism reports. 2018;15,106-109.
3. Zhou X., Cui Y., Han J. Methylmalonic acidemia: Current status and research priorities. Intractable & rare diseases research. 2018;7(2),73-78.
4. Chen T., Gao Y., Zhang S., et al. Methylmalonic acidemia: Neurodevelopment and neuroimaging. Frontiers in Neuroscience. 2023;17,1110942.
5. Marchuk H., Wang Y., Ladd Z.A., et al. Pathophysiological mechanisms of complications associated with propionic acidemia. Pharmacology & therapeutics. 2023;249,108501.
6. Baranov A.A., Namasova-Baranova L.S., Borovik T.E., et al. Metilmalonovaya atsiduriya u detey: klinicheskiye rekomendatsii [Methylmalonic Aciduria in Children: Clinical Recommendations]. Pediatricheskaya farmakologiya [Pediatric pharmacology]. 2017;14(4):258-271. (In Russ.)
7. Neonatal’nyy skrining: natsional’noye rukovodstvo. Pod red. S.I.Kutseva [Neonatal screening: national guidelines. Edited by S.I. Kutsev]. Moscow: GEOTAR-Media, 2023. 360 p. (In Russ.)
8. Head P.E., Meier J.L., Venditti C.P. New insights into the pathophysiology of methylmalonic acidemia. Journal of inherited metabolic disease. 2023;46(3);436-449.
9. Soyuz pediatrov Rossii, Assotsiatsiya meditsinskikh genetikov. Klinicheskiye rekomendatsii. Drugiye vidy narusheniya obmena aminokislot s razvetvlennoy tsep’yu (Metilmalonovaya atsidemiya / atsiduriya) [Union of Pediatricians of Russia, Association of Medical Geneticists. Clinical guidelines. Other types of branched-chain amino acid metabolism disorders (methylmalonic acidemia/aciduria)]. 2021. (In Russ.)
10. Soyuz pediatrov Rossii, Assotsiatsiya meditsinskikh genetikov. Klinicheskiye rekomendatsii. Drugiye vidy narusheniya obmena aminokislot s razvetvlennoy tsep’yu (Propionovaya atsidemiya /atsiduriya) [Union of Pediatricians of Russia, Association of Medical Geneticists. Clinical guidelines. Other types of branched-chain amino acid metabolism disorders (propionic acidemia/aciduria)]. 2021. (In Russ.)
11. Ryzhkova O.P., Kardymon O.L., Prohorchuk E.B., et al. Rukovodstvo po interpretatsii dannykh posledovatel’nosti DNK cheloveka, poluchennykh metodami massovogo parallel’nogo sekvenirovaniya (MPS) (redaktsiya 2018, versiya 2) [Guidelines for the interpretation of massive parallel sequencing variants (update 2018, v2)]. Meditsinskaya genetika [Medical Genetics]. 2019;18(2):3- 23. (In Russ.)
12. International growth standards for newborn and premature infants https://intergrowth21.ndog.ox.ac.uk/
13. McHugh D., Cameron C.A., Abdenur J.E., et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project. Genetics in Medicine. 2011;13(3):230-254.
14. Pajares S., Arranz J.A., Ormazabal A., et al. Implementation of second-tier tests in newborn screening for the detection of vitamin B12 related acquired and genetic disorders: results on 258,637 newborns. Orphanet journal of rare diseases. 2021;16(1):195.
15. Schnabel E., Kölker S., Gleich .F, et al. Combined newborn screening allows comprehensive identification also of attenuated phenotypes for methylmalonic acidurias and homocystinuria. Nutrients. 2023;15(15):3355.
16. Ruoppolo M., Malvagia S., Boenzi S. Expanded newborn screening in Italy using tandem mass spectrometry: two years of national experience. International Journal of Neonatal Screening. 2022;8(3):47.
17. Nogueira C., Marcão A., Rocha H., et al. Molecular picture of cobalamin C/D defects before and after newborn screening era. Journal of medical screening. 2017;24(1):6-11.
18. Chace D.H., Kalas T.A., Naylor E.W. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clinical chemistry. 2003;49(11):1797-1817.
19. Heringer J., Valayannopoulos V., Lund A.M., et al. Impact of age at onset and newborn screening on outcome in organic acidurias. Journal of inherited metabolic disease. 2016;39(3):341-353.
20. Zhu J., Han L., Yang P., et al. Spectrum analysis of inborn errors of metabolism for expanded newborn screening in Xinjiang, China. Peer J. 2024;12, e18173.
21. Dionisi-Vici C., Deodato F., Röschinger W., et al. Classical’organic acidurias, propionic aciduria, methylmalonic aciduria and isovaleric aciduria: long-term outcome and effects of expanded newborn screening using tandem mass spectrometry. Journal of inherited metabolic disease. 2006;29(2-3):383-389.
22. Khan A.R., Alothaim A., Alfares A., et al. Cut-off values in newborn screening for inborn errors of metabolism in Saudi Arabia. Annals of Saudi Medicine. 2022;42(2):107-118.
23. Manoli I., Sloan J.L., Venditti C.P. Isolated Methylmalonic Acidemia. В книге Adam MP, Feldman J, Mirzaa GM, et al. GeneReviews. Seattle (WA): University of Washington, Seattle; 2005;1993–2025.
Review
For citations:
Baranova P.V., Vasileva M.V., Bakin N.V., Moryakova N.V., Aksyanova Kh.F., Kolchina A.N., Astakhova T.A., Bairova T.A., Buyanova G.V., Pobedinskaya A.I., Vafina Z.I., Gamzatova A.I., Gorda M.V., Dmitrieva T.T., Eremina E.R., Kekeeva T.N., Lobanova V.S., Kolbasin L.N., Papanov S.I., Kotalevskaya Y.Y., Revazyan K.Z., Svetlichnaya D.V., Kotova A.A., Kochegurova E.M., Kubekova E.L., Kuzmicheva I.A., Matulevich S.A., Dzemina I.A., Melnikova T.V., Novik M.A., Omzar O.S., Dulush A.O., Paveleva O.P., Potapova I.V., Saydaeva D.Kh., Serebryakova E.A., Fedchuk E.S., Nazarenko Y.D., Pchelina S.N., Zakharova E.Y. Methylmalonic and Propionic Acidemias in the Expanded Newborn Screening Program in the Russian Federation: Evaluation of Diagnostic Performance and Algorithm Optimization. Medical Genetics. 2025;24(10):16-39. (In Russ.) https://doi.org/10.25557/2073-7998.2025.10.16-39






















