Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Body composition in children with cystic fibrosis and its association with polymorphic variants of energy metabolism genes

https://doi.org/10.25557/2073-7998.2025.08.69-71

Abstract

   Aim: to conduct an associative search for variants of ACE, PPARGC1A, ACTN3, PPARA genes with nutritional status and body composition of children with cystic fibrosis (CF).

   Methods: patients with CF (F508del/F508del) (n = 425) 0 to 18 years old (11,8 ± 3,8 лет) We studied: BMI, and body composition (for children over 5 years old) before and after 1 year of targeted therapy. Was study the percentage ratio (%) of active cellular body mass (ACM), skeletal muscle mass (SMM) and fat mass (FM) by Z-score. Single nucleotide polymorphisms (SNPs) of the ACE gene (rs1799752), of the PPARGC1A gene (rs8192678), of the ACTN3 gene (rs1815739), of the PPARA gene (rs4253778) were tested by PCR and RFLP analysis.

   Results: Dynamics after a 1 year of targeted therapy, body weight in boys significant increased by 5.3 (±2.5) kg, height by 5.7 (±1.7) cm (p < 0,01), in girls by 4.5 (±1.9) kg, height by 4.8 (±1.3) cm (p < 0,01). In boys showed an increase in FM (%) from -0.23 to 0.13 SD (p = 0.04). In girls, the FM (%) increased from -0.15 to 0.08 SD (p = 0.02) and the % SMM decreased from 0.79 to 0.6 SD (p = 0.04). The GA genotype of the PPARGC1A gene tended to have decreased % ACM (-1.1-2 SD) (p=0.071) and very low % ACM (<-2.1 SD) (p = 0.062).

   Conclusion: An analysis of body composition in children with CF showed an increase in the proportion of fat mass after 1 year of taking the targeted drug.

About the Authors

T. Yu. Maksimycheva
Research Centre for Medical Genetics; Research Clinical Institute of Childhood of the Ministry of Health of the Moscow Region; Russian Medical Academy for Continuous Professional Training
Russian Federation

115522; 1, Moskvorechye st.; Moscow; 141009; 24A-1, Kominterna st.; Mytishchi; 125993; 2/1, Barrikadnaya st.; Moscow



E. I. Kondratyeva
Research Centre for Medical Genetics; Research Clinical Institute of Childhood of the Ministry of Health of the Moscow Region
Russian Federation

115522; 1, Moskvorechye st.; Moscow; 141009; 24A-1, Kominterna st.; Mytishchi



Yu. L. Melyanovskaya
Research Centre for Medical Genetics; Research Clinical Institute of Childhood of the Ministry of Health of the Moscow Region
Russian Federation

115522; 1, Moskvorechye st.; Moscow; 141009; 24A-1, Kominterna st.; Mytishchi



M. V. Tarasov
Research Centre for Medical Genetics
Russian Federation

115522; 1, Moskvorechye st.; Moscow



E. V. Loshkova
Research Centre for Medical Genetics; Siberian State Medical University of the Ministry of health of the Russian Federation
Russian Federation

115522; 1, Moskvorechye st.; Moscow; 634050; 2, Moskovsky trakt; Tomsk



N. V. Balinova
Research Centre for Medical Genetics
Russian Federation

115522; 1, Moskvorechye st.; Moscow



S. P. Shchelykalina
Pirogov Russian National Research Medical University
Russian Federation

117513; 1, Ostrovitianova st.; Moscow



References

1. Soltman S., Hicks R. A., Khan F. N., Kelly A. Body composition in individuals with cystic fibrosis. J Clin Transl Endocrinol. 2021; 26: 100272. doi: 10.1016/j.jcte.2021.100272

2. Calella P., Valerio G., Thomas M., et al. Association between body composition and pulmonary function in children and young people with cystic fibrosis. Nutrition. 2018 doi: 10.1016/j.nut.2017.10.026.

3. Calella P., Valerio G., Brodlie M., Donini L.M., Siervo M. Cystic fibrosis, body composition, and health outcomes : a systematic review. Nutrition. 2018;55-56:131-139. doi: 016/j.nut.2018.03.052.

4. Wilschanski M., Munck A., Carrion E., et al. ESPEN-ESPGHAN-ECFS guideline on nutrition care for cystic fibrosis. Clin Nutr. 2024;43 (2):413-445. doi: 10.1016/j.clnu.2023.12.017.

5. Mésinèle J., Ruffin M., Guillot L., Corvol H. Modifier Factors of Cystic Fibrosis Phenotypes: A Focus on Modifier Genes. Int J Mol Sci. 2022;23 (22):14205. doi: 10.3390/ijms232214205.

6. Salvatore F., Scudiero O., Castaldo G. Genotype-phenotype correlation in cystic fibrosis: the role of of modifier genes. Am J Med Genet. 2002;111 (1):88-95. doi: 10.1002/ajmg.10461.

7. WHO Child Growth Standards. https://www.who.int/tools/child-growth-standards/software

8. López Cárdenes C.M., Merino Sánchez-Cañete A., Vicente Santamaría S., et al. Effects on growth, weight and body composition after CFTR modulators in children with cystic fibrosis. Pediatr Pulmonol. 2024;59(12):3632-3640. doi: 10.1002/ppul.27272.

9. Maksimycheva T.Yu., Kondratyeva E.I. Bioimpedansnyy analiz sostava tela u patsiyentov s mukovistsidozom [Bioimpedance analysis (BIA) of body composition in patients with cystic fibrosis]. Vopr. prakt. pediatr. [Clinical Practice in Pediatrics]. 2023; 18(1): 36–42. (In Russ.). DOI: 10.20953/1817-7646-2023-1-36-42

10. Merlo C.A., Boyle M.P. Modifier genes in cystic fibrosis lung disease. J Lab Clin Med. 2003; 141(4):237-41. doi: 10.1067/mlc.2003.29


Review

For citations:


Maksimycheva T.Yu., Kondratyeva E.I., Melyanovskaya Yu.L., Tarasov M.V., Loshkova E.V., Balinova N.V., Shchelykalina S.P. Body composition in children with cystic fibrosis and its association with polymorphic variants of energy metabolism genes. Medical Genetics. 2025;24(8):69-71. (In Russ.) https://doi.org/10.25557/2073-7998.2025.08.69-71

Views: 28


ISSN 2073-7998 (Print)