Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Clinical, biochemical and molecular-genetic features of selective screening of Russian patients with Niemann-Pick disease types A, B and A/B. Results of the selective screening program

https://doi.org/10.25557/2073-7998.2025.08.14-28

Abstract

   Background. Niemann-Pick disease, types A, B and A/B (NPD) is a rare autosomal recessive disorder from the group of lysosomal disorders caused by deficiency of the enzyme acid sphingomyelinase. The average incidence of the disease is 0.4 – 0.6 cases per 100,000 live births.

   Aim: to describe the clinical, biochemical and molecular genetic features of 20 Russian patients with NPD, types A, B and A/B, and to describe the experience of selective screening for NPD types A, B and A/B.

   Methods. The activity of acid sphingomyelinase was analyzed in samples of 4498 patients admitted for examination to the Medical Genomics Laboratory of the Medical Genetics Center of the Federal State Autonomous Institution «National Medical Research Center of Children’s Health» of the Ministry of Health of the Russian Federation from 2013 to 2024 as part of various selective screening programs. Molecular genetic diagnostics in patients with reduced sphingomyelinase activity was performed using Sanger sequencing.

   Results. For the first time in Russia, the results of twelve years of experience in selective screening of a rare hereditary Niemann-Pick disease types A, B and A/B are presented, including clinical and anamnestic manifestations, biochemical and molecular genetic research methods. 24 different variants of the SMPD1 gene were identified in 20 Russian patients.

About the Authors

A. A. Rusakova
National Medical Research Center for Children’s Health Federal state autonomous institution of the Russian Federation Ministry of Health
Russian Federation

Anastasia A. Rusakova

119991; 2, build. 1, Lomonosovsky pr.; Moscow



N. N. Mazanova
National Medical Research Center for Children’s Health Federal state autonomous institution of the Russian Federation Ministry of Health
Russian Federation

119991; 2, build. 1, Lomonosovsky pr.; Moscow



G. B. Movsisyan
National Medical Research Center for Children’s Health Federal state autonomous institution of the Russian Federation Ministry of Health
Russian Federation

119991; 2, build. 1, Lomonosovsky pr.; Moscow



D. S. Demianov
National Medical Research Center for Children’s Health Federal state autonomous institution of the Russian Federation Ministry of Health
Russian Federation

119991; 2, build. 1, Lomonosovsky pr.; Moscow



M. N. Kalasov
Republican Perinatal Center named after S.-M.A.Omarov
Russian Federation

367027; 2, Akhmed Magomedov st.; Makhachkala



I. S. Zhanin
National Medical Research Center for Children’s Health Federal state autonomous institution of the Russian Federation Ministry of Health
Russian Federation

119991; 2, build. 1, Lomonosovsky pr.; Moscow



V. A. Bezrukikh
Almazov National Medical Research Center of the Ministry of Health of the Russian Federation
Russian Federation

2197341; 2, Akkuratova st.; St. Petersburg



L. V. Goncharova
Regional Children’s Clinical Hospital
Russian Federation

344015; 14, Rifle Division; Rostov-on-Don



G. L. Tyapaikina
Republican Children’s Clinical Hospital
Russian Federation

428020; 27, Fedora Gladkova st.; Cheboksary



A. V. Sukhozhenko
The Federal Research Center «Fundamentals of Biotechnology» of the Russian Academy of Sciences
Russian Federation

119071; 33, build. 2, Leninsky prospect; Moscow



A. A. Pushkov
National Medical Research Center for Children’s Health Federal state autonomous institution of the Russian Federation Ministry of Health
Russian Federation

119991; 2, build. 1, Lomonosovsky pr.; Moscow



A. Y. Alekseeva
National Medical Research Center for Children’s Health Federal state autonomous institution of the Russian Federation Ministry of Health
Russian Federation


R. V. Ponomarev
National Medical Research Center for Hematology of the Ministry of Health of the Russian Federation
Russian Federation

125167; 4, Novy Zykovsky Proezd; Moscow



E. A. Lukina
National Medical Research Center for Hematology of the Ministry of Health of the Russian Federation
Russian Federation

125167; 4, Novy Zykovsky Proezd; Moscow



A. P. Fisenko
National Medical Research Center for Children’s Health Federal state autonomous institution of the Russian Federation Ministry of Health
Russian Federation

119991; 2, build. 1, Lomonosovsky pr.; Moscow



A. Yu. Asanov
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

119048; 8-2, Trubetskaya st.; Moscow



K. V. Savostyanov
National Medical Research Center for Children’s Health Federal state autonomous institution of the Russian Federation Ministry of Health
Russian Federation

119991; 2, build. 1, Lomonosovsky pr.; Moscow



References

1. Vanier M.T. Chapter 176 – Niemann–Pick diseases. In Handbook of Clinical Neurology. Ed(s): Dulac O., Lassonde M., Sarnat H.B. 2013; 113: 1717–21. doi: 10.1016/B978-0-444-59565-2.00041-1

2. Crocker A.C. The cerebral defect in Tay-Sachs disease and Niemann-Pick disease. Journal of Neurochemistry. 1961;7(1):69–80. doi: 10.1111/j.1471-4159.1961.tb13499.x

3. Wasserstein M.P., Desnick R.J., Schuchman E.H., et al. The Natural History of Type B Niemann-Pick Disease: Results From a 10-Year Longitudinal Study. Pediatrics. 2004;114(6):e672–7. doi: 10.1542/peds.2004-0887

4. McGovern M.M., Lippa N., Bagiella E., et al. Morbidity and mortality in type B Niemann–Pick disease. Genetics in Medicine. 2013;15(8):618–23. doi: 10.1038/gim.2013.4

5. varsome.com/gene/hg38/SMPD1.

6. Zampieri S., Filocamo M., Pianta A., et al. SMPD1 mutation update: Database and comprehensive analysis of published and novel variants. Human Mutation. 2016;37(2):139–47. doi: 10.1002/humu.22923

7. Pan Y.W., Tsai M.C., Yang C.Y., et al. Enzyme replacement therapy for children with acid sphingomyelinase deficiency in the real world: A single center experience in Taiwan. Molecular genetics and metabolism reports. 2023;34:100957. doi: 10.1016/j.ymgmr.2023.100957

8. Sinha D.B., Simpson W.L., Ting A., et al. Benefits of early intervention with olipudase alfa in symptomatic children with acid sphingomyelinase deficiency: A sibling case-comparison study. Molecular Genetics and Metabolism Reports. 2025;43:101210. doi: 10.1016/j.ymgmr.2025.101210

9. Legnini E., Orsini J.J., Mühl A., et al. Analysis of acid sphingomyelinase activity in dried blood spots using tandem mass spectrometry. Annals of laboratory medicine. 2012;32(5):319–23. doi: 10.3343/alm.2012.32.5.319

10. Chang S., Zhan X., Liu Y., et al. Newborn Screening for 6 Lysosomal Storage Disorders in China. JAMA network open. 2024;7(5):e2410754. doi: 10.1001/jamanetworkopen.2024.10754

11. Wittmann J., Karg E., Turi S., et al. Newborn screening for lysosomal storage disorders in hungary. JIMD reports. 2012;6:117–25. doi: 10.1007/8904_2012_130

12. Hickey R.E, Baker J. Newborn screening for acid sphingomyelinase deficiency in Illinois: A single center’s experience. Journal of inherited metabolic disease. 2024;47(6):1363–70. doi: 10.1002/jimd.12780

13. Ryzhkova O.P., Kardymon O.L., Prohorchuk E.B., et al. Rukovodstvo po interpretatsii dannykh posledovatel’nosti DNK cheloveka, poluchennykh metodami massovogo parallel’nogo sekvenirovaniya (MPS) (redaktsiya 2018, versiya 2) [Guidelines for the interpretation of massive parallel sequencing variants (update 2018, v2)]. Meditsinskaya genetika [Medical Genetics]. 2019;18(2):3-23. (In Russ.)

14. Savostyanov K. V. Sovremennyye algoritmy geneticheskoy diagnostiki redkikh nasledstvennykh bolezney u rossiyskikh patsiyentov. [Modern algorithms for genetic diagnostics of rare hereditary diseases in Russian patients]. .M: FGAU «NMITS zdorov’ya detey Minzdrava Rossii» [Moscow: Federal State Autonomous Institution «National Medical Research Center of Children’s Health of the Ministry of Health of the Russian Federation»]. 2022. – 454 p. (In Russ.)

15. Savostyanov K.V., Pushkov A.A., Basargina E.N., et al. Selective screening and molecular characteristics of Russian patients with Pompe disease. LO Badalyan Neurological Journal. 2021;2(4):203–15. doi: 10.46563/2686-8997-2021-2-4-203-215

16. Savostyanov K., Pushkov A., Zhanin I., et al. Genotype–Phenotype Correlations in 293 Russian Patients with Causal Fabry Disease Variants. Genes. 2023;14(11):2016. doi: 10.3390/genes14112016

17. Gragnaniello V., Cazzorla C., Gueraldi D., et al. Newborn Screening for Acid Sphingomyelinase Deficiency: Prevalence and Genotypic Findings in Italy. International Journal of Neonatal Screening. 2024;10(4). doi: 10.3390/ijns10040079

18. McGovern M.M., Dionisi-Vici C., Giugliani R., et al. Consensus recommendation for a diagnostic guideline for acid sphingomyelinase deficiency. Genetics in Medicine. 2017;19(9):967–74. doi: 10.1038/gim.2017.7

19. Villarrubia J., Morales M., Ceberio L., et al. Ecological study to estimate the prevalence of patients with acid sphingomyelinase deficiency in Spain. PREVASMD study. Revista Clínica Española (English Edition) [Internet]. 2024; Available from: https://linkinghub.elsevier.com/retrieve/pii/S225488742400153X doi: 10.1016/j.rceng.2024.11.007

20. Pinto C., Sousa D., Ghilas V., et al. Acid Sphingomyelinase Deficiency: A Clinical and Immunological Perspective. International Journal of Molecular Sciences. 2021;22(23):12870. doi: 10.3390/ijms222312870

21. Mauhin W., Guffon N., Vanier M.T., et al. Acid sphingomyelinase deficiency in France: a retrospective survival study. Orphanet Journal of Rare Diseases. 2024;19(1):289. doi: 10.1186/s13023-024-03234-6

22. Pulikottil-Jacob R., Dehipawala S., Smith B., et al. Survival of patients with chronic acid sphingomyelinase deficiency (ASMD) in the United States : A retrospective chart review study. Molecular Genetics and Metabolism Reports. 2024;38:101040. doi: 10.1016/j.ymgmr.2023.101040

23. McGovern M.M., Avetisyan R., Sanson B.J., Lidove O. Disease manifestations and burden of illness in patients with acid sphingomyelinase deficiency (ASMD). Orphanet J Rare Dis. 2017;12(1):41. doi: 10.1186/s13023-017-0572-x.

24. Cox G.F., Clarke L.A., Giugliani R., McGovern M.M. Burden of Illness in Acid Sphingomyelinase Deficiency : A Retrospective Chart Review of 100 Patients. JIMD Rep. 2018;41:119-129. doi: 10.1007/8904_2018_120.

25. Wasserstein M.P., Aron A., Brodie S.E., et al. Acid sphingomyelinase deficiency: Prevalence and characterization of an intermediate phenotype of Niemann-Pick disease. The Journal of Pediatrics. 2006;149(4):554–9. doi: 10.1016/j.jpeds.2006.06.034

26. McGovern M.M., Aron A., Brodie S.E., et al. Natural history of Type A Niemann-Pick disease. Neurology. 2006;66(2):228–32. doi: 10.1212/01.wnl.0000194208.08904.0c

27. Gaudioso Á., Jiang X., Casas J., et al. Sphingomyelin 16:0 is a therapeutic target for neuronal death in acid sphingomyelinase deficiency. Cell Death & Disease. 2023;14(4):248. doi: 10.1038/s41419-023-05784-2

28. Wang N., Zhang Y., Gedvilaite E., et al. Using whole-exome sequencing to investigate the genetic bases of lysosomal storage diseases of unknown etiology. Human mutation. 2017;38(11):1491–9. doi: 10.1002/humu.23291

29. Lipiński P., Kuchar L., Zakharova E.Y., et al. Chronic visceral acid sphingomyelinase deficiency (Niemann-Pick disease type B) in 16 Polish patients: long-term follow-up. Orphanet journal of rare diseases. 2019;14(1):55. doi: 10.1186/s13023-019-1029-1

30. Mihaylova V., Hantke J., Sinigerska I., et al. Highly variable neural involvement in sphingomyelinase-deficient Niemann-Pick disease caused by an ancestral Gypsy mutation. Brain. 2006;130(4):1050–61. doi: 10.1093/brain/awm026

31. Ota S., Noguchi A., Kondo D., et al. An Early-Onset Neuronopathic Form of Acid Sphingomyelinase Deficiency: A SMPD1 p.C133Y Mutation in the Saposin Domain of Acid Sphingomyelinase. The Tohoku journal of experimental medicine. 2020;250(1):5–11. doi: 10.1620/tjem.250.5

32. Cerón-Rodríguez M., Vázquez-Martínez E.R., García-Delgado C., et al. Niemann-Pick disease A or B in four pediatric patients and SMPD1 mutation carrier frequency in the Mexican population. Annals of hepatology. 2019;18(4):613–9. doi: 10.1016/j.aohep.2018.12.004

33. Thomas S.P. A descriptive profile of type B personality. Image--the journal of nursing scholarship. 1986;18(1):4–7. doi: 10.1111/j.1547-5069.1986.tb00531.x

34. Gorelik A., Illes K., Heinz L.X., et al. Crystal structure of mammalian acid sphingomyelinase. Nature communications. 2016;7:12196. doi: 10.1038/ncomms12196

35. Wang R., Qin Z., Huang L., et al. SMPD1 expression profile and mutation landscape help decipher genotype-phenotype association and precision diagnosis for acid sphingomyelinase deficiency. Hereditas. 2023 Mar 13;160(1):11. doi: 10.1186/s41065-023-00272-1

36. Zhang H., Wang Y., Gong Z., et al. Identification of a distinct mutation spectrum in the SMPD1 gene of Chinese patients with acid sphingomyelinase-deficient Niemann-Pick disease. Orphanet journal of rare diseases. 2013;8. doi: 10.1186/1750-1172-8-15

37. Savostyanov K.V., Pushkov A.A., Shchagina O.A., et al. Genetic Landscape of Nephropathic Cystinosis in Russian Children. Front. Genet. 13:863157. doi: 10.3389/fgene.2022.863157


Review

For citations:


Rusakova A.A., Mazanova N.N., Movsisyan G.B., Demianov D.S., Kalasov M.N., Zhanin I.S., Bezrukikh V.A., Goncharova L.V., Tyapaikina G.L., Sukhozhenko A.V., Pushkov A.A., Alekseeva A.Y., Ponomarev R.V., Lukina E.A., Fisenko A.P., Asanov A.Yu., Savostyanov K.V. Clinical, biochemical and molecular-genetic features of selective screening of Russian patients with Niemann-Pick disease types A, B and A/B. Results of the selective screening program. Medical Genetics. 2025;24(8):14-28. (In Russ.) https://doi.org/10.25557/2073-7998.2025.08.14-28

Views: 38


ISSN 2073-7998 (Print)