

Differential expression of non-coding RNAs in patients with сhronic obstructive pulmonary disease
https://doi.org/10.25557/2073-7998.2025.04.79-81
Abstract
Chronic obstructive pulmonary disease (COPD) is a multifactorial heterogeneous chronic inflammatory disease that affects distal airways (bronchi and bronchioles) and lung parenchyma and leads to pulmonary emphysema. We investigated the expression levels of selected genes in peripheral blood mononuclear cells (PBMCs) and lung tissue from patients with COPD: lncRNAs – TP53TG1, LINC00342, H19, MALAT1, DNM3OS, MEG3, LUCAT1, CDKN2B-AS1, SNHG5, miRNAs – miR-18a-5p, miR-200a-3p, miR-34a-5p, miR-126-3p, miR-218-5p, miR29a-3p, miR-150-5p, miR-570-3p, miR-155-5p, miR-15b-5p, miR-141-3p, miR-379-5p. Lung tissue and blood samples were collected from 141 patients and 138 healthy controls. Gene expression levels were analyzed by RT-qPCR. Our study identified significant differential expression in PBMCs 5 lncRNAs MALAT1, TP53TG1, LINC00342, DNM3OS, LUCAT1; 9 miRNAs: miR-155-5p, miR-141-3p, miR-379-5p, miR18a-5p, miR-34a-5p, miR-126-3p, miR-218-5p, miR-29a-3p, miR-150-5p. In lung tissue significant expression changes were observed in 4 lncRNAs: LUCAT1, CDKN2B-AS1, DNM3OS, TP53TG1; 7 miRNAs: miR-155-5p, miR-15b-5p, miR-18a-5p, miR-200a-3p, miR-34a-5p, miR126-3p, miR-218-5p. In silico pathway enrichment analysis indicates that RNAs differentially expressed in COPD patients are implicated in critical cellular processes, including apoptosis, antioxidant response, inflammation, and cellular senescence.
About the Authors
V. A. MarkelovRussian Federation
7, Pr. Oktyabryae., Ufa, 450054,
3, Lenin st., Ufa
L. Z. Akhmadishina
Russian Federation
7, Pr. Oktyabryae., Ufa, 450054
T. R. Nasibullin
Russian Federation
7, Pr. Oktyabryae., Ufa, 450054
Y. G. Aznabaeva
Russian Federation
3, Lenin st., Ufa
O. V. Kochetova
Russian Federation
7, Pr. Oktyabryae., Ufa, 450054,
3, Lenin st., Ufa
G. F. Korytina
Russian Federation
7, Pr. Oktyabryae., Ufa, 450054,
3, Lenin st., Ufa
References
1. Chuchalin A.G., Avdeev S.N., Aisanov Z.R., et al. Khronicheskaya obstruktivnaya bolezn’ legkikh: federal’nyye klinicheskiye rekomendatsii po diagnostike i lecheniyu [Federal guidelines on diagnosis and treatment of chronic obstructive pulmonary disease]. Pul’monologiya [Pulmonologiya]. 2022;32(3):356-392. (In Russ.)
2. Agustí A., Celli B.R., Criner G.J. et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Eur Respir J. 2023;61(4):2300239.
3. Barnes P.J., Baker J., Donnelly L.E. Cellular Senescence as a Mechanism and Target in Chronic Lung Diseases. Am J Respir Crit Care Med. 2019;200(5):556-564.
4. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408.
5. Puvvula P.K. LncRNAs Regulatory Networks in Cellular Senescence. Int J Mol Sci. 2019;20(11):2615.
6. Zhang P., Wu W., Chen Q., Chen M. Non-Coding RNAs and their Integrated Networks. J Integr Bioinform. 2019;16(3):20190027.
Review
For citations:
Markelov V.A., Akhmadishina L.Z., Nasibullin T.R., Aznabaeva Y.G., Kochetova O.V., Korytina G.F. Differential expression of non-coding RNAs in patients with сhronic obstructive pulmonary disease. Medical Genetics. 2025;24(4):79-81. (In Russ.) https://doi.org/10.25557/2073-7998.2025.04.79-81