

Description of hematologic and molecular genetic features of beta-thalassemia in laboratory practice
https://doi.org/10.25557/2073-7998.2025.03.26-41
Abstract
Introduction. Beta-thalassemia is one of the most common inherited disorders characterized by reduced or complete absence of beta-globin chain synthesis. The CBC parameters of patients with beta-thalassemia are often similar to other microcytic hypochromic anemias, which makes it difficult to use these parameters for the purpose of differential diagnosis of anemias. The prevalence of beta-thalassemia is increasing in non-endemic regions, including the Russian Federation. However, in our country, the prevalence, laboratory and molecular genetic features of beta-thalassemia remain insufficiently studied.
Objective: to characterize hematological and molecular genetic features of beta-thalassemia in laboratory practice.
Methods. The present study examined the results of CBC of 58266 patients over 18 years of age. Patients with hemoglobin and/or mean corpuscular volume and/or mean corpuscular hemoglobin values below the reference values were selected according to the results of a complete blood count. Mentzer and Sirdah’s calculated indices were utilised for further differentiation. Patients with both indices below the threshold values were subjected to direct automatic Sanger sequencing of the HBB gene.
Results. Among 58266 patients, 20040 (34.39%) had Hb and/or MCV and/or MCH values below reference values. Values of both calculated indices indicated beta-thalassemia in 182 patients (0.91% among patients with CBC changes, 0.31% among all subjects). Using the Sanger direct automatic sequencing method, pathogenic variants of the HBB gene were identified in 64 patients, which is 0.32% among patients with CBC changes or 0.109% among all examined individuals. The most common pathogenic variant of the HBB gene in this study is c.25_26del (rs35497102) (21.8%).
Conclusions. A total of 20 different pathogenic variants located in all regions of the HBB gene were detected in this study, which underlines the necessity of studying the nucleotide sequence of the entire gene in the diagnosis of beta-thalassemia using molecular genetic methods. The findings of this study demonstrate that the utilisation of CBC and calculated erythrocyte indices possesses the capacity to categorise patients into distinct risk groups; nevertheless, these methodologies are not characterised by a high degree of sensitivity. The development of more effective methods of differential diagnosis of beta-thalassemia from other microcytic hypochromic anemias is necessary.
About the Authors
D. S. SlivinskiyRussian Federation
6-8 Lva Tolstogo st., Saint Petersburg, 197022
V. D. Nazarov
Russian Federation
6-8 Lva Tolstogo st., Saint Petersburg, 197022
A. K. Musonova
Russian Federation
6-8 Lva Tolstogo st., Saint Petersburg, 197022
D. V. Sidorenko
Russian Federation
6-8 Lva Tolstogo st., Saint Petersburg, 197022
S. V. Lapin
Russian Federation
6-8 Lva Tolstogo st., Saint Petersburg, 197022
A. V. Mazing
Russian Federation
6-8 Lva Tolstogo st., Saint Petersburg, 197022
I. S. Moiseev
Russian Federation
6-8 Lva Tolstogo st., Saint Petersburg, 197022
T. A. Bykova
Russian Federation
6-8 Lva Tolstogo st., Saint Petersburg, 197022
A. A. Jakovenko
Russian Federation
6-8 Lva Tolstogo st., Saint Petersburg, 197022
A. V. Vasiliev
Russian Federation
20 B. Sampsonievsky pr. Saint Petersburg, 194044
D. G. Denisov
Russian Federation
5 Karpovka r. em., Saint Petersburg, 197022
References
1. Goonasekera H.W., Paththinige C.S., Dissanayake V.H.W. Population Screening for Hemoglobinopathies. Annu Rev Genomics Hum Genet. 2018 Aug 31;19:355-380. doi: 10.1146/annurev-genom-091416-035451.
2. Galanello R., Origa R. Beta-thalassemia. Orphanet J Rare Dis. 2010 May 21;5:11. doi: 10.1186/1750-1172-5-11.
3. Croteau S.E., Luo H.Y., Lehmann L.E., et al. Novel dominant β-thalassemia: Hb Boston-Kuwait [codon 139/140(+T)]. Pediatr Blood Cancer. 2013 Oct;60(10):E131-4. doi: 10.1002/pbc.24611.
4. Origa R. β-Thalassemia. Genet Med. 2017 Jun;19(6):609-619. doi: 10.1038/gim.2016.173.
5. Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010 Feb;12(2):61-76. doi: 10.1097/GIM.0b013e3181cd68ed.
6. Verlinsky O.Yu., Zhilenkova Yu.I., Kozlov A.V., Bessmeltsev S.S. Laboratornyye markery vyyavleniya nositel’stva beta-talassemii [The laboratory markers of detection of beta-thalassemia carriage]. Klinicheskaya Laboratornaya Diagnostika [Russian Clinical Laboratory Diagnostics]. 2017; 62 (3): 149-153. (In Russ.) http://dx.doi.org/10.18821/0869-2084-2017-62-3-149-153
7. Grech L., Borg K., Borg J. Novel therapies in β-thalassaemia. Br J Clin Pharmacol. 2022 Jun;88(6):2509-2524. doi: 10.1111/bcp.14918.
8. Qari M.H., Wali Y., Albagshi M.H., et al. Regional consensus opinion for the management of Beta thalassemia major in the Arabian Gulf area. Orphanet J Rare Dis. 2013 Sep 17;8:143. doi: 10.1186/1750-1172-8-143.
9. Aydinok Y.. Thalassemia. Hematology. 2012 Apr;17 Suppl 1:S28-31. doi: 10.1179/102453312X13336169155295.
10. Needs T., Gonzalez-Mosquera L.F., Lynch D.T. Beta Thalassemia. 2023. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2024.
11. Brancaleoni V., Di Pierro E., Motta I., Cappellini M.D. Laboratory diagnosis of thalassemia. Int J Lab Hematol. 2016 May;38 Suppl 1:32-40. doi: 10.1111/ijlh.12527.
12. Luo H.Y., Chui D.H. Diverse hematological phenotypes of β-thalassemia carriers. Ann N Y Acad Sci. 2016 Mar;1368(1):49-55. doi: 10.1111/nyas.13056.
13. Zeynalova L.E., Alieva S.R. Biokhimicheskiye izmeneniya v kro vi pri β -talassemii. Metgemoglobinovyy factor [Biochemical changes in the blood in β -thalassemia. Methemoglobin factor. Aktual’nyye problemy gumanitarnykh i yestestvennykh nauk [Actual problems of humanitarian and natural sciences]. 2013;(5):31-34. (In Russ.)
14. Ali S., Mumtaz S., Shakir H.A., et al. Current status of beta-thalassemia and its treatment strategies. Mol Genet Genomic Med. 2021 Dec;9(12):e1788. doi: 10.1002/mgg3.1788.
15. Chauhan W,. Shoaib S., Fatma R., et al. Beta-thalassemia and the advent of new interventions beyond transfusion and iron chelation. Br J Clin Pharmacol. 2022 Aug;88(8):3610-3626. doi: 10.1111/bcp.15343.
16. Kwiatkowski J.L. Clinical Challenges with Iron Chelation in Beta Thalassemia. Hematol Oncol Clin North Am. 2023 Apr;37(2):379-391. doi: 10.1016/j.hoc.2022.12.013.
17. Hoffmann J.J., Urrechaga E., Aguirre U. Discriminant indices for distinguishing thalassemia and iron deficiency in patients with microcytic anemia: a meta-analysis. Clin Chem Lab Med. 2015 Nov;53(12):1883-94. doi: 10.1515/cclm-2015-0179.
18. Bajwa H., Basit H. Thalassemia. 2023 Aug 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan–.
19. Khachaturian A.G., Nazarov V.D., Lapin S.V., et al. Laboratornaya kharakteristika gemoglobinopatiy [Laboratory features of hemoglobinopathies]. Gematologiya i transfuziologiya [Russian journal of hematology and transfusiology]. 2024;69(1):40-51. (In Russ.) https://doi.org/10.35754/0234-5730-2024-69-1-40-51
20. Thein S.L. The molecular basis of β-thalassemia. Cold Spring Harb Perspect Med. 2013 May 1;3(5):a011700. doi: 10.1101/cshperspect.a011700.
21. Weatherall D.J. Genetic variation and susceptibility to infection: the red cell and malaria. Br J Haematol. 2008 May;141(3):276-86. doi: 10.1111/j.1365-2141.2008.07085.x.
22. Shah T.P., Shrestha A., Agrawal J.P., et al. Role of Mentzer Index for Differential Diagnosis of Iron Deficiency Anaemia and Beta Thalassemia Trait. J Nepal Health Res Counc. 2023 Sep 8;21(1):99-102. doi: 10.33314/jnhrc.v21i1.4479.
23. Shchemeleva E., Salomashkina V.V., Selivanova D., et al. Active spread of β-thalassemia beyond the thalassemia belt: A study on a Russian population. Clin Genet. 2024 Aug 14. doi: 10.1111/cge.14606.
24. Kuliev A.M., Rasulov I.M., Dadasheva T., et al. Thalassaemia in Azerbaijan. J Med Genet. 1994 Mar;31(3):209-12. doi: 10.1136/jmg.31.3.209.
25. Kattamis A., Forni G.L., Aydinok Y., Viprakasit V. Changing patterns in the epidemiology of β-thalassemia. Eur J Haematol. 2020 Dec;105(6):692-703. doi: 10.1111/ejh.13512.
26. Kościelak J. Prevalence of beta-thalassemia minor in Poland. Probl Hig Epidemiol 2009, 90(3): 322-324.
27. Troitskaia O.V., Kuznetsov V.I., Iushkova N.M. Gemoglobinopatii u studentov Rossiŭskogo universiteta druzhby narodov [Hemoglobinopathies in students at the Russian University of the Friendship of Peoples]. Klin Lab Diagn. 1999 May;(5):19-24, 41-6.
28. Liang P., Xu Y., Zhang X., et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015 May;6(5):363-372. doi: 10.1007/s13238-015-0153-5.
29. Guo X., Liu Z., Mu Y., et al. Spatial and Temporal Expression Characteristics of the HBB Gene Family in Six Different Pig Breeds. Genes (Basel). 2022 Oct 9;13(10):1822. doi: 10.3390/genes13101822.
30. Zhilenkova Yu.I. Osobennosti laboratornoy diagnostiki razlichnykh form gemoglobinopatiy. [Features of laboratory diagnostics of various forms of hemoglobinopathies]. St. Petersburg, 2017. – 24 p. (In Russ.)
31. Demidova E.Yu., Selivanova D.S., Salomashkina V.V., et al. Epidemiologiya beta-talassemii v Rossii [Epidemiology of beta-thalassemia in Russia]. Gematologiya i transfuziologiya [Russian journal of hematology and transfusiology]., 2022;67;(S2):104-104. (In Russ.)
32. Jalilian M., Azizi Jalilian F., Ahmadi L., et al. The Frequency of HBB Mutations Among β-Thalassemia Patients in Hamadan Province, Iran. Hemoglobin. 2017 Jan;41(1):61-64. doi: 10.1080/03630269.2017.1302468.
33. Guzelgul F., Seydel G.S., Aksoy K. β-Globin Gene Mutations in Pediatric Patients with β-Thalassemia in the Region of Çukurova, Turkey. Hemoglobin. 2020 Jul;44(4):249-253. doi: 10.1080/03630269.2020.1792489.
34. Ghoti H., Fibach E., Rachmilewitz E.A., et al. New Insights on β-Thalassemia in the Palestinian Population of Gaza: High Frequency and Milder Phenotype Among Homozygous IVS-I-1 (HBB: c.92+1G>A) Patients with High Levels of Hb F. Hemoglobin. 2017 Mar;41(2):144-146. doi: 10.1080/03630269.2017.1339611.
35. Hussain A., Ahmed S., Ali N., et al. Rare β-Globin Gene Mutations in Pakistan. Hemoglobin. 2017 Mar;41(2):100-103. doi: 10.1080/03630269.2017.1339612.
36. Baliyan M., Kumar M., Nangia A., Parakh N. Can RBC Indices be Used as Screening Test for Beta-Thalassemia in Indian Antenatal Women? J Obstet Gynaecol India. 2019 Dec;69(6):495-500. doi: 10.1007/s13224-019-01220-8.
37. Sherali A., Ahad A., Tikmani S.S., et al. Screening of Iron Deficiency Anemia in Children Using Mentzer Index in Pakistan: A Cross Sectional Study. Glob Pediatr Health. 2023 Feb 11;10:2333794X221130986. doi: 10.1177/2333794X221130986.
38. Huang T.C., Wu Y.Y., Chen Y.G., et al. Discrimination index of microcytic anemia in young soldiers: a single institutional analysis. PLoS One. 2015 Feb 13;10(2):e0114061. doi: 10.1371/journal.pone.0114061.
39. Shahmirzalou P., Hamze M.S., Sadagheyani H.E. A New Formula Based on Simple Blood Indices to Differentiate Beta Thalassemia Trait from Iron Deficiency Anemia. Iran J Public Health. 2024 May;53(5):1192-1199. doi: 10.18502/ijph.v53i5.15601.
40. Vucak J., Turudic D., Milosevic D., et al. Genotype-phenotype Correlation of β-Thalassemia in Croatian Patients: A Specific HBB Gene Mutations. J Pediatr Hematol Oncol. 2018 Mar;40(2):e77-e82. doi: 10.1097/MPH.0000000000001039.
Review
For citations:
Slivinskiy D.S., Nazarov V.D., Musonova A.K., Sidorenko D.V., Lapin S.V., Mazing A.V., Moiseev I.S., Bykova T.A., Jakovenko A.A., Vasiliev A.V., Denisov D.G. Description of hematologic and molecular genetic features of beta-thalassemia in laboratory practice. Medical Genetics. 2025;24(3):26-41. (In Russ.) https://doi.org/10.25557/2073-7998.2025.03.26-41