

The role of microRNAs in the pathogenesis and therapy of oncological diseases
https://doi.org/10.25557/2073-7998.2025.03.3-13
Abstract
Introduction. MicroRNAs (miRNAs) are a class of short non-coding RNA molecules that play a central role in the post-transcriptional regulation of gene expression. These molecules are involved in key cellular processes such as proliferation, apoptosis, differentiation, and angiogenesis, making them crucial regulators of cellular homeostasis. Depending on the context, miRNAs can act as oncogenes or tumor suppressors, regulating signaling pathways associated with the development and progression of malignancies, including the PI3K/AKT and Wnt/β-catenin pathways.
Aim: to provide a comprehensive analysis of the role of miRNAs in the pathogenesis and therapy of oncological diseases.
Results. The article explores the potential of miRNAs as biomarkers for early diagnosis, such as miR-21 in pancreatic cancer and miR-141 in prostate cancer. It also highlights findings from preclinical and clinical studies demonstrating the therapeutic potential of miRNAs, including the use of AntagomiR-21 and miR-34a mimics (MRX34). Challenges related to delivery and biosafety are also addressed, with potential solutions proposed through the application of nanotechnology. The molecular mechanisms of their involvement in tumor progression, their diagnostic potential, and therapeutic applications are discussed. Special attention is given to recent advancements, including the use of next-generation sequencing (NGS) for miRNA profiling and CRISPR/Cas9 for functional analysis.
Conclusions. The findings confirm that miRNAs represent a promising direction in the diagnosis and treatment of oncological diseases. Continued research in this field could significantly enhance our understanding of the molecular mechanisms underlying cancer and lead to the development of personalized therapeutic approaches.
About the Authors
M. A. OmarovRussian Federation
Magomed A. Omarov
6-8, L’va Tolstogo st., Saint Petersburg, 197022
R. M. Gadjiev
Russian Federation
3, Lenina st., Ufa, 450008
A. R. Akhmatnurov
Russian Federation
3, Lenina st., Ufa, 450008
M. H. Musaeva
Russian Federation
3, Lenina st., Ufa, 450008
M. H. Musaeva
Russian Federation
3, Lenina st., Ufa, 450008
M. R. Rasulov
Russian Federation
3, Lenina st., Ufa, 450008
M. R. Rasulov
Russian Federation
3, Lenina st., Ufa, 450008
References
1. O’Brien J., Hayder H., Zayed Y., Peng,C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in endocrinology. 2018;9: 402. https://doi.org/10.3389/fendo.2018.00402.
2. Omarov M.A., Mulyukov A.R., Khalitov R.V., et al. Epigeneticheskaya modulyatsiya v meditsine: regulyatsiya gennoy ekspressii v kontekste patogeneza i terapii. [Epigenetic modulation in medicine: Regulation of gene expression in the context of pathogenesis and therapy]. Acta biomedica scientifica. 2024; 9(6): 22-33. (In Russ.) doi: 10.29413/ABS.2024-9.6.3.
3. Sung H., Ferlay J., Siegel R.L., et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. https://doi.org/10.3322/caac.21660.
4. Shi Y., Liu Z., Lin Q., et al. MiRNAs and Cancer: Key Link in Diagnosis and Therapy. Genes (Basel). 2021;12(8):1289. https://doi.org/10.3390/genes12081289.
5. Kwon Y., Kim M., Kim Y., Jung H.S., Jeoung D. Exosomal MicroRNAs as Mediators of Cellular Interactions Between Cancer Cells and Macrophages. Front Immunol. 2020;11:1167. https://doi.org/10.3389/fimmu.2020.01167.
6. Miroshnichenko S.K., Patutina O.A., Zenkova M.A. MikroRNK-napravlennyye oligonukleotidnyye konstruktsii s razlichnym mekhanizmom deystviya dlya effektivnogo podavleniya protsessov kantserogeneza [miRNA-targeting oligonucleotide constructs with various mechanisms of action as effective inhibitors of carcinogenesis]. BIOpreparaty. Profilaktika, diagnostika, lecheniye [Biological Products. Prevention, Diagnosis, Treatment]. 2024;24(2):140-156. (In Russ.) https://doi.org/10.30895/2221-996X-2024-24-2-140-156
7. Treiber T., Treiber N., Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nature Reviews Molecular Cell Biology. 2018;20:5 - 20. https://doi.org/10.1038/s41580-018-0059-1.
8. Bibel B., Elkayam E., Silletti S., Komives E.A., Joshua-Tor L. Target binding triggers hierarchical phosphorylation of human Argonaute-2 to promote target release. Elife. 2022;11:e76908. https://doi.org/10.7554/eLife.76908.
9. Annese T., Tamma R., De Giorgis M., Ribatti D. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol. 2020;10:581007. https://doi.org/10.3389/fonc.2020.581007.
10. Maraghechi P., Aponte M.T.S., Ecker A., et al. Pluripotency-Associated microRNAs in Early Vertebrate Embryos and Stem Cells. Genes (Basel). 2023;14(7):1434. https://doi.org/10.3390/genes14071434.
11. Glaich O., Parikh S., Bell R.E. et al. DNA methylation directs microRNA biogenesis in mammalian cells. Nat Commun. 2019;10:5657. https://doi.org/10.1038/s41467-019-13527-1.
12. Li Q., Liu J., Jia Y., Li T., Zhang M. miR-623 suppresses cell proliferation, migration and invasion through direct inhibition of XRCC5 in breast cancer. Aging (Albany NY). 2021;12:10246 - 10258. https://doi.org/10.18632/aging.103182.
13. Voropaeva E.N., Pospelova T.I., Nesterets A.M., Maksimov V.N. Relationship between cluster miR-143/145 micro-RNAs with oncogenesis: tissue and cellular context. Siberian journal of oncology. 2023;22(3):134-143. (In Russ.) https://doi.org/10.21294/1814-4861-2023-22-3-134-143.
14. Vallée A., Lecarpentier Y., Vallée J. N. The Key Role of the WNT/β-Catenin Pathway in Metabolic Reprogramming in Cancers under Normoxic Conditions. Cancers. 2021;13(21):5557. https://doi.org/10.3390/cancers13215557.
15. Shi Z., To S., Zhang S., et al. Hypoxia-induced Nur77 activates PI3K/Akt signaling via suppression of Dicer/let-7i-5p to induce epithelial-to-mesenchymal transition. Theranostics. 2021;11:3376 - 3391. https://doi.org/10.7150/thno.52190.
16. Wu J., Zhu Y., Liu D., Cong Q., Bai C. Biological functions and potential mechanisms of miR-143-3p in cancers (Review). Oncology Reports. 2024;52:113. https://doi.org/10.3892/or.2024.8772.
17. Bautista-Sánchez D., Arriaga-Canon C., Pedroza-Torres A., et al. The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. Mol Ther Nucleic Acids. 2020;20:409-420. https://doi.org/10.1016/j.omtn.2020.03.003.
18. Gruszka R., Zakrzewska M. The Oncogenic Relevance of miR-17-92 Cluster and Its Paralogous miR-106b-25 and miR-106a-363 Clusters in Brain Tumors. Int J Mol Sci. 2018;19(3):879. https://doi.org/10.3390/ijms19030879.
19. Jung E., Seong Y., Jeon B., Kwon Y., Song H. MicroRNAs of miR-17-92 cluster increase gene expression by targeting mRNA-destabilization pathways.. Biochimica et biophysica acta. Gene regulatory mechanisms. 2018;1861(7): 603-612. https://doi.org/10.1016/j.bbagrm.2018.06.003.
20. Hossain M., Sultana A., Barua D., et al. Differential expression, function and prognostic value of miR-17-92 cluster in ER-positive and triple-negative breast cancer.. Cancer treatment and research communications. 2020;25:100224 . https://doi.org/10.1016/j.ctarc.2020.100224.
21. Al-Nakhle H. Unraveling the Multifaceted Role of the miR-17-92 Cluster in Colorectal Cancer: From Mechanisms to Biomarker Potential. Current Issues in Molecular Biology. 2024;46:1832 - 1850. https://doi.org/10.3390/cimb46030120.
22. Chen X., Deng Y., Cao G., et al. Ultra-sensitive MicroRNA-21 detection based on multiple cascaded strand displacement amplification and CRISPR/Cpf1 (MC-SDA/CRISPR/Cpf1). Chemical Communications. 2021;57(52):6359–6362. https://doi.org/10.1039/d1cc01938d.
23. Liu T., Liu D., Guan S., Dong M. Diagnostic role of circulating MiR-21 in colorectal cancer: a update meta-analysis. Annals of Medicine. 2020;53:87-102. https://doi.org/10.1080/07853890.2020.1828617.
24. Nitusca D., Marcu A., Seclaman E. et al. Circulating microRNA-141 as a biomarker for prostate cancer: A systematic review and meta-analysis. Timisoara Med. 2022;2022(2):4; doi:10.35995/tmj20220204.
25. Olisova O.Y., Amshinskaya J.R., Demkin V.V. Mikro-RNK v diagnostike T-kletochnykh limfom kozhi [Micro-RNAs in the Diagnosis of Cutaneous T-Cell Lymphomas]. Vestnik Rossiyskoy akademii meditsinskikh nauk [Annals of the Russian academy of medical sciences]. 2023;78(6):530-540 (In Russ.) doi: 10.15690/vramn11612.
26. Rhim J., Baek W., Seo Y., Kim J.H. From Molecular Mechanisms to Therapeutics: Understanding MicroRNA-21 in Cancer. Cells. 2022;11(18):2791. https://doi.org/10.3390/cells11182791.
27. Sabahi A., Salahandish R., Ghaffarinejad A., Omidinia E. Electro-chemical nano-genosensor for highly sensitive detection of miR-21 biomarker based on SWCNT-grafted dendritic Au nanostructure for early detection of prostate cancer.. Talanta. 2022;209:120595 . https://doi.org/10.1016/j.talanta.2019.120595.
28. Su Y., Swiderski P., Marcucci G., Kortylewski M. Targeted Delivery of miRNA Antagonists to Myeloid Cells In Vitro and In Vivo.. Methods in molecular biology. 2019;1974:141-150 . https://doi.org/10.1007/978-1-4939-9220-1_10.
29. Ahir M., Upadhyay P., Ghosh A., et al. Delivery of dual miRNA through CD44-targeted mesoporous silica nanoparticles for enhanced and effective triple-negative breast cancer therapy. Biomaterials science. 2020;8:2939-2954. https://doi.org/10.1039/d0bm00015a.
30. Hong D., Kang Y., Borad M., et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. British Journal of Cancer. 2020;122:1630 - 1637. https://doi.org/10.1038/s41416-020-0802-1.
31. Capolla S., Argenziano M., Bozzer S., et al. Targeted chitosan nanobubbles as a strategy to down-regulate microRNA-17 into B-cell lymphoma models. Frontiers in immunology. 2023;14:1200310. https://doi.org/10.3389/fimmu.2023.1200310.
32. Ha J., Kim M., Lee Y., Lee M. Intranasal delivery of self-assembled nanoparticles of therapeutic peptides and antagomirs elicits anti-tumor effects in an intracranial glioblastoma model.. Nanoscale. 2021;13:14745-14759. https://doi.org/10.1039/d1nr03455c.
33. Mahmood M., Taufiq I., Mazhar S., et al. Revolutionizing personalized cancer treatment: the synergy of next-generation sequencing and CRISPR/Cas9. Personalized medicine. 2024;16(12):1958. https://doi.org/10.1080/17410541.2024.2341610.
34. Wu L., Zhou W., Zhou J., et al. Circulating exosomal microRNAs as novel potential detection biomarkers in pancreatic cancer. Oncology Letters. 2020;20:1432-1440. https://doi.org/10.3892/ol.2020.11691.
35. Rabaan A., AlSaihati H., Bukhamsin R., et al. Application of CRIS-PR/Cas9 Technology in Cancer Treatment: A Future Direction. Current Oncology. 2023;30:1954 - 1976. https://doi.org/10.3390/curroncol30020152.
36. Shi S., Gu S., Han T., et al. Inhibition of MAN2A1 Enhances the Immune Response to Anti–PD-L1 in Human Tumors. Clinical Cancer Research. 2020;26:5990 - 6002. https://doi.org/10.1158/1078-0432.CCR-20-0778.
Review
For citations:
Omarov M.A., Gadjiev R.M., Akhmatnurov A.R., Musaeva M.H., Musaeva M.H., Rasulov M.R., Rasulov M.R. The role of microRNAs in the pathogenesis and therapy of oncological diseases. Medical Genetics. 2025;24(3):3-13. (In Russ.) https://doi.org/10.25557/2073-7998.2025.03.3-13