Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Monogenic obesity: modern possibilities of targeted therapy

https://doi.org/10.25557/2073-7998.2025.02.14-30

Abstract

The prevalence of obesity in the Russian Federation continues to increase. Thus, among men, the prevalence increased from 10.8% in 1993 to 27.9% in 2017, among women – from 26.4% to 31.8%, respectively. Large-scale resources of genetic/genomic data, as well as objective reviews of genetic/genomic variants in cohorts of people with early development of obesity, especially in inbred populations, have led to the identification and characterization of rare and common genetic variants associated with the development of obesity. The increasing understanding of the prevalence of obesity caused by rare variants of the nucleotide sequence, as well as the identification of new genes associated with monogenic obesity, emphasize the importance of genetic analysis in assessing the cause of the disease. Most of the genes discussed in the review are involved in the leptin and melanocortin production system, however, genes regulating adipogenesis can also influence the development of obesity. Special attention should be paid to genetic testing of people with earlyonset severe obesity, especially in cases where it is accompanied by dysmorphic disorder, disorders of the nervous system or other systemic abnormalities. This testing can help in the accurate diagnosis and understanding of the causes of obesity, which, in turn, will allow the development of more individualized treatment strategies. The use of methods such as antisense oligonucleotides and gene editing technologies can significantly change treatment approaches, making them more effective.

About the Authors

D. G. Khubaeva
I.M. Sechenov First Moscow State Medical University
Russian Federation

8-2, Trubetskaya st., Moscow, 119991



A. A. Zolina
Ryazan State Medical University named after academician I. P. Pavlov
Russian Federation

9, Vysokovol’tnaya street, Ryazan, 390026



Z. G. Yurovskih
Ivanovo State Medical University
Russian Federation

8, Sheremetev avenue, Ivanovo, 153012



M. A. Drozhdin
South-Ural State Medical University
Russian Federation

64, Vorovskogo st., Chelyabinsk, 454092



S. R. Khakova
Izhevsk State Medical Academy
Russian Federation

281, Kommunarov st., Izhevsk, 426056



E. A. Kachikeeva
Siberian State Medical University
Russian Federation

2, Moskovsky trakt, 634050, Tomsk



A. R. Khusnullina
I. P. Pavlov First St. Petersburg State Medical University
Russian Federation

6-8, L’va Tolstogo st., Saint Petersburg, 197022



I. S. Ermakov
Ivanovo State Medical University
Russian Federation

8, Sheremetev avenue, Ivanovo, 153012



A. A. Kulakov
The Russian University of Medicine
Russian Federation

4, Dolgorukovskaya st., Moscow, 127006



M. A. Kolesnikov
Yaroslavl State Medical University
Russian Federation

5, Revolutionary st., Yaroslavl, 150000



D. V. Vasileva
Ivanovo State Medical University
Russian Federation

8, Sheremetev avenue, Ivanovo, 153012



D. A. Petrov
N. I. Pirogov Russian National Research Medical University (Pirogov university)
Russian Federation

1 bldg. 6, Ostrovityanova st., Moscow 117513



A. F. Yusupova
Bashkir state medical university
Russian Federation

3, Lenina st., Ufa, 450008



References

1. Alferova V.I., Mustafina S.V. Rasprostranennost’ ozhireniya vo vzrosloy populyatsii Rossiyskoy Federatsii (obzor literatury) [The prevalence of obesity in the adult population of the Russian Federation (literature review)]. Ozhireniye i metabolizm [Obesity and metabolism]. 2022;19(1):96-105. (In Russ.) https://doi.org/10.14341/omet12809.

2. Peterkova V.A., Bezlepkina O.B., Bolotova N.V., et al. Klinicheskiye rekomendatsii «Ozhireniye u detey» [Clinical guidelines «Obesity in children»]. Problemy Endokrinologii [Problems of Endocrinology]. 2021;67(5):67-83. (In Russ.) https://doi.org/10.14341/probl12802.

3. World Obesity Federation. World Obesity Atlas 2024. https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2024.

4. Vasyukova O.V., Okorokov P.L., Bezlepkina O.B. Sovremennyye strategii lecheniya ozhireniya u detey [Modern strategies for the treatment of childhood obesity]. Problemy Endokrinologii [Problems of Endocrinology]. 2022;68(6):131-136. (In Russ.) https://doi.org/10.14341/probl13208.

5. Dedov I.I., Shestakova M.V., Melnichenko G.A., et al. Mezhdistsiplinarnyye klinicheskiye rekomendatsii «Lecheniye ozhireniya i komorbidnykh zabolevaniy» [Interdisciplinary clinical practice guidelines «Management of obesity and its comorbidities»]. Ozhireniye i metabolizm [Obesity and metabolism]. 2021;18(1):5-99. (In Russ.) https://doi.org/10.14341/omet12714.

6. Strizheletsky V.V., Gomon Yu.М., Spichakova Е.А., et al. Lekarstvennaya terapiya ozhireniya v Rossiyskoy Federatsii: farmakoepidemiologicheskoye issledovaniye [Drug therapy for obesity in the Russian Federation: pharmacoepidemiological study]. Farmakoekonomika. Sovremennaya farmakoekonomika i farmakoepidemiologiya [Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology]. 2022;15(3):320-331. (In Russ.) https://doi.org/10.17749/2070-4909/farmakoekonomika.2022.149.

7. Bycroft C., Freeman C., Petkova D., et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203-209. doi: 10.1038/s41586-018-0579-z.

8. Backman J.D., Li A.H., Marcketta A., et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature. 2021;599(7886):628-634. doi: 10.1038/s41586-021-04103-z.

9. Ramirez A.H., Gebo K.A., Harris P.A. Progress With the All of Us Research Program: Opening Access for Researchers. JAMA. 2021;325(24):2441-2442. doi: 10.1001/jama.2021.7702.

10. Tamaroff J., Williamson D., Slaughter J.C, et al. Prevalence of genetic causes of obesity in clinical practice. Obes Sci Pract. 2023;9(5):508-515. doi: 10.1002/osp4.671.

11. Shi P., Shi Y., Liu X., et al. Identification and Characteristics of Novel Mutations in Nonsyndromic Monogenic Obesity. Adv Biol (Weinh). 2023;7(8):e2300061. doi: 10.1002/adbi.202300061.

12. Roberts K.J., Chaves E., Ariza A.J., et al. Exploring Genetic Testing for Rare Disorders of Obesity: Experience and Perspectives of Pediatric Weight Management Providers. Child Obes. 2024;20(7):451-458. doi: 10.1089/chi.2023.0125.

13. FDA News Release. FDA approves first gene therapies to treat patients with sickle cell disease. FDA Newsroom; 2023. https://www.fda.gov/news-events/press-announcements/fda-approvesfirstgene-therapies-treat-patients-sickle-cell-disease.

14. Petrov A.A., Lebedev V.N., Sizikova T.E., et al. Analiz primeneniya antismyslovykh oligonukleotidov dlya profilaktiki i lecheniya opasnykh i osobo opasnykh virusnykh infektsionnykh zabolevaniy [Analysis of Use of Antisense Oligonucleotides for Prevention and Treatment of Hazardous and Extremely Hazardous Viral Infectious Diseases]. Antibiotiki i Khimioterapiya [Antibiotics and Chemotherapy]. 2019;64(7-8):56-62. (In Russ.) https://doi.org/10.24411/0235-2990-2019-100045.

15. Borodkina D.A., Gruzdeva O.V., Akbasheva O.E., et al. Leptinorezistentnost’, nereshennyye voprosy diagnostiki [Leptin resistance: unsolved diagnostic issues]. Problemy Endokrinologii [Problems of Endocrinology]. 2018;64(1):62-66. https://doi.org/10.14341/probl8740.

16. Markham A. Setmelanotide: First Approval. Drugs. 2021;81(3):397-403. doi: 10.1007/s40265-021-01470-9.

17. Trapp C.M., Censani M. Setmelanotide: a promising advancement for pediatric patients with rare forms of genetic obesity. Curr Opin Endocrinol Diabetes Obes. 2023;30(2):136-140. doi: 10.1097/MED.0000000000000798.

18. Peterkova V.A., Vasiukova O.V. K voprosu o novoy klassifikatsii ozhireniya u detey i podrostkov About the new classification of obesity in the children and adolescents. Problemy Endokrinologii [Problems of Endocrinology]. 2015;61(2):39-44. (In Russ.) doi: 10.14341/probl201561239-44.

19. Chua S.C. Jr., Chung W.K., Wu-Peng X.S., et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science. 1996;271(5251):994-6. doi: 10.1126/science.271.5251.994.

20. Clément K., Mosbah H., Poitou C. Rare genetic forms of obesity: From gene to therapy. Physiol Behav. 2020;227:113134. doi: 10.1016/j.physbeh.2020.113134.

21. Amaratunga S.A., Tayeb T.H., Dusatkova P., et al. Invaluable Role of Consanguinity in Providing Insight into Paediatric Endocrine Conditions: Lessons Learnt from Congenital Hyperinsulinism, Monogenic Diabetes, and Short Stature. Horm Res Paediatr. 2022;95(1):1-11. doi: 10.1159/000521210.

22. Wang Q., Zhang X., Qin T., et al. Unusual Presentation in WAGR Syndrome: Expanding the Phenotypic and Genotypic Spectrum of the Diseases. Genes (Basel). 2022;13(8):1431. doi: 10.3390/genes13081431.

23. Sonoyama T., Stadler .L.K.J., Zhu M., et al. Human BDNF/TrkB variants impair hippocampal synaptogenesis and associate with neurobehavioural abnormalities. Sci Rep. 2020;10(1):9028. doi: 10.1038/s41598-020-65531-x.

24. Makazan N.V., Orlova E.M., Tozliyan E.V., et al. Klinicheskiy polimorfizm psevdogipoparatireoza u detey [Variable phenotype of pseudohypoparathyroidism in children]. Problemy Endokrinologii [Problems of Endocrinology]. 2017;63(3):148-161. (In Russ.). doi:10.14341/probl2017633148-161.

25. Mendes de Oliveira E., Keogh J.M., Talbot F., et al Obesity-Associated GNAS Mutations and the Melanocortin Pathway. N Engl J Med. 2021;385(17):1581-1592. doi: 10.1056/NEJMoa2103329.

26. Perez K.M., Curley K.L., Slaughter J.C., Shoemaker A.H. Glucose Homeostasis and Energy Balance in Children With Pseudohypoparathyroidism. J Clin Endocrinol Metab. 2018;103(11):4265-4274. doi: 10.1210/jc.2018-01067.

27. Roizen J.D., Danzig J., Groleau V., et al. Resting Energy Expenditure Is Decreased in Pseudohypoparathyroidism Type 1A. J Clin Endocrinol Metab. 2016;101(3):880-8. doi: 10.1210/jc.2015-3895.

28. Shoemaker A.H., Lomenick J.P., Saville B.R., et al. Energy expenditure in obese children with pseudohypoparathyroidism type 1a. Int J Obes (Lond). 2013;37(8):1147-53. doi: 10.1038/ijo.2012.200.

29. Timasheva Ya.R., Balkhiyarova Zh.R., Kochetova O.V. Sovremennoye sostoyaniye issledovaniy v oblasti ozhireniya: geneticheskiye aspekty, rol’ mikrobioma i predraspolozhennost’ k COVID-19 [Current state of the obesity research: genetic aspects,the role of microbiome, and susceptibility to COVID-19]. Problemy Endokrinologii [Problems of Endocrinology]. 2021;67(4):20-35. (In Russ.) doi:10.14341/probl12775.

30. Baron M., Maillet J., Huyvaert M., et al. Loss-of-function mutations in MRAP2 are pathogenic in hyperphagic obesity with hyperglycemia and hypertension. Nat Med. 2019;25(11):1733-1738. doi: 10.1038/s41591-019-0622-0.

31. Bernard A., Ojeda Naharros I., Yue X., et al. MRAP2 regulates energy homeostasis by promoting primary cilia localization of MC4R. JCI Insight. 2023;8(2):e155900. doi: 10.1172/jci.insight.155900.

32. Keramati A.R., Fathzadeh M., Go G.W., et al. A form of the metabolic syndrome associated with mutations in DYRK1B. N Engl J Med. 2014;370(20):1909-1919. doi: 10.1056/NEJMoa1301824.

33. Mendoza-Caamal E.C., Barajas-Olmos F., Mirzaeicheshmeh E., et al. Two novel variants in DYRK1B causative of AOMS3: expanding the clinical spectrum. Orphanet J Rare Dis. 2021;16(1):291. doi: 10.1186/s13023-021-01924-z.

34. Folon L., Baron M., Scherrer V., Toussaint B., et al. Pathogenic, Total Loss-of-Function DYRK1B Variants Cause Monogenic Obesity Associated With Type 2 Diabetes. Diabetes Care. 2024;47(3):444-451. doi: 10.2337/dc23-1851.

35. Brouwers B., de Oliveira E.M., Marti-Solano M., et al. Human MC4R variants affect endocytosis, trafficking and dimerization revealing multiple cellular mechanisms involved in weight regulation. Cell Rep. 2021;34(12):108862. doi: 10.1016/j.celrep.2021.108862.

36. Anderson E.J.P., Ghamari-Langroudi M., Cakir I., et al. Late onset obesity in mice with targeted deletion of potassium inward rectifier Kir7.1 from cells expressing the melanocortin-4 receptor. J Neuroendocrinol. 2019;31(1):e12670. doi: 10.1111/jne.12670.

37. Ghamari-Langroudi M., Digby G.J., Sebag J.A., et al. G-proteinindependent coupling of MC4R to Kir7.1 in hypothalamic neurons. Nature. 2015;520(7545):94-8. doi: 10.1038/nature14051.

38. Hernandez C.C., Gimenez L.E., Dahir N.S., et al. The unique structural characteristics of the Kir 7.1 inward rectifier potassium channel: a novel player in energy homeostasis control. Am J Physiol Cell Physiol. 2023;324(3):C694-C706. doi: 10.1152/ajpcell.00335.2022.

39. Lotta L.A., Mokrosiński J., Mendes de Oliveira E., et al. Human Gain-of-Function MC4R Variants Show Signaling Bias and Protect against Obesity. Cell. 2019;177(3):597-607.e9. doi: 10.1016/j.cell.2019.03.044.

40. Chami N., Preuss M., Walker R.W., et al. The role of polygenic susceptibility to obesity among carriers of pathogenic mutations in MC4R in the UK Biobank population. PLoS Med. 2020;17(7):e1003196. doi: 10.1371/journal.pmed.1003196.

41. Wade K.H., Lam B.Y.H., Melvin A., et al. Loss-of-function mutations in the melanocortin 4 receptor in a UK birth cohort. Nat Med. 2021;27(6):1088-1096. doi: 10.1038/s41591-021-01349-y.

42. Trier C., Hollensted M., Schnurr T.M., et al. Obesity treatment effect in Danish children and adolescents carrying Melanocortin-4 Receptor mutations. Int J Obes (Lond). 2021;45(1):66-76. doi: 10.1038/s41366-020-00673-6.

43. Lim J.G., Moh A., Pandian B., et al. Short-term Weight Trajectory of Severely Obese Individuals With and Without Pathogenic Satiety-Regulation Melanocortin 3/4 Receptor (MC3/4R) Mutations From a Multi-ethnic Asian Large Bariatric Surgery Program. J Investig Med High Impact Case Rep. 2023;11:23247096231168108. doi: 10.1177/23247096231168108.

44. Gong Y., Wu Q., Huang S., et al. Functional Characterization of MC4R Variants in Chinese Morbid Obese Patients and Weight Loss after Bariatric Surgery. Adv Biol (Weinh). 2023;7(9):e2300007. doi: 10.1002/adbi.202300007.

45. Salazar-Valencia I.G,. Villamil-Ramírez H., Barajas-Olmos F., et al. Effect of the Melanocortin 4-Receptor Ile269Asn Mutation on Weight Loss Response to Dietary, Phentermine and Bariatric Surgery Interventions. Genes (Basel). 2022;13(12):2267. doi: 10.3390/genes13122267.

46. Richards S., Aziz N., Bale S., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. doi: 10.1038/gim.2015.30.

47. Shah B.P., Sleiman P.M., Mc Donald J., et al. Functional characterization of all missense variants in LEPR, PCSK1, and POMC genes arising from single-nucleotide variants. Expert Rev Endocrinol Metab. 2023;18(2):209-219. doi: 10.1080/17446651.2023.2179985.

48. Cenni C., Andres S., Hempel M., et al. TBX3 and TBX5 duplication: A family with an atypical overlapping Holt-Oram/ulnar-mammary syndrome phenotype. Eur J Med Genet. 2021;64(7):104213. doi: 10.1016/j.ejmg.2021.104213.

49. Quarta C., Fisette A., Xu Y., et al. Functional identity of hypothalamic melanocortin neurons depends on Tbx3. Nat Metab. 2019;1(2):222-235. doi: 10.1038/s42255-018-0028-1.

50. Lu Q., Zhu L. The Role of Semaphorins in Metabolic Disorders. Int J Mol Sci. 2020;21(16):5641. doi: 10.3390/ijms21165641.

51. van der Klaauw A.A., Croizier S., Mendes de Oliveira E., et al. Human Semaphorin 3 Variants Link Melanocortin Circuit Development and Energy Balance. Cell. 2019;176(4):729-742.e18. doi: 10.1016/j.cell.2018.12.009.

52. Yang Y., van der Klaauw A.A., Zhu L., et al. Steroid receptor coactivator-1 modulates the function of POMC neurons and energy homeostasis. Nat Commun. 2019;10(1):1718. doi: 10.1038/s41467-019-08737-6.

53. Cacciottolo T.M., Henning E., Keogh J.M., et al. Obesity Due to Steroid Receptor Coactivator-1 Deficiency Is Associated With Endocrine and Metabolic Abnormalities. J Clin Endocrinol Metab. 2022;107(6):e2532-e2544. doi: 10.1210/clinem/dgac067.

54. Berglund E.D., Liu C., Sohn J.W., et al. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis. J Clin Invest. 2013;123(12):5061-70. doi: 10.1172/JCI70338.

55. He Y., Brouwers B., Liu H., et al. Human loss-of-function variants in the serotonin 2C receptor associated with obesity and maladaptive behavior. Nat Med. 2022;28(12):2537-2546. doi: 10.1038/s41591-022-02106-5.

56. Dodd G.T., Luckman S.M. Physiological Roles of GPR10 and PrRP Signaling. Front Endocrinol (Lausanne). 2013;4:20. doi: 10.3389/fendo.2013.00020.

57. Talbot F., Feetham C.H., Mokrosiński J., et al. A rare human variant that disrupts GPR10 signalling causes weight gain in mice. Nat Commun. 2023;14(1):1450. doi: 10.1038/s41467-023-36966-3.

58. Zhu N., LeDuc C.A., Fennoy I., et al. Rare predicted loss of function alleles in Bassoon (BSN) are associated with obesity. NPJ Genom Med. 2023;8(1):33. doi: 10.1038/s41525-023-00376-7.

59. Craddock K.E., Okur V., Wilson A., et al. Clinical and genetic characterization of individuals with predicted deleterious PHIP variants. Cold Spring Harb Mol Case Stud. 2019;5(4):a004200. doi: 10.1101/mcs.a004200.

60. Jansen S., Hoischen A., Coe B.P., et al. A genotype-first approach identifies an intellectual disability-overweight syndrome caused by PHIP haploinsufficiency. Eur J Hum Genet. 2018;26(1):54-63. doi: 10.1038/s41431-017-0039-5.

61. Marenne G., Hendricks A.E., Perdikari A., et al. Exome Sequencing Identifies Genes and Gene Sets Contributing to Severe Childhood Obesity, Linking PHIP Variants to Repressed POMC Transcription. Cell Metab. 2020;31(6):1107-1119.e12. doi: 10.1016/j.cmet.2020.05.007.

62. Sudnawa K.K., Calamia S., Geltzeiler A., Chung W.K. Clinical phenotypes of individuals with Chung-Jansen syndrome across age groups. Am J Med Genet A. 2024;194(3):e63471. doi: 10.1002/ajmg.a.63471.

63. Conti B., Rinaldi B., Rimoldi M., et al. Chung-Jansen syndrome can mimic Cornelia de Lange syndrome: Another player among chromatinopathies? Am J Med Genet A. 2023;191(6):1586-1592. doi: 10.1002/ajmg.a.63164.

64. Kampmeier A., Leitão E., Parenti I., et al. PHIP-associated Chung-Jansen syndrome: Report of 23 new individuals. Front Cell Dev Biol. 2023;10:1020609. doi: 10.3389/fcell.2022.1020609.

65. Akbari P., Gilani A., Sosina O., et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science. 2021;373(6550):eabf8683. doi: 10.1126/science.abf8683.

66. Funcke J.B., Moepps B., Roos J., et al. Rare Antagonistic Leptin Variants and Severe, Early-Onset Obesity. N Engl J Med. 2023;388(24):2253-2261. doi: 10.1056/NEJMoa2204041.

67. Saeed S., Arslan M., Manzoor J., et al. Genetic Causes of Severe Childhood Obesity: A Remarkably High Prevalence in an Inbred Population of Pakistan. Diabetes. 2020;69(7):1424-1438. doi: 10.2337/db19-1238.

68. Saeed S., Khanam R., Janjua Q.M., et al. High morbidity and mortality in children with untreated congenital deficiency of leptin or its receptor. Cell Rep Med. 2023;4(9):101187. doi: 10.1016/j.xcrm.2023.101187.

69. Saeed S., Janjua Q.M., Haseeb A., et al. Rare Variant Analysis of Obesity-Associated Genes in Young Adults With Severe Obesity From a Consanguineous Population of Pakistan. Diabetes. 2022;71(4):694-705. doi: 10.2337/db21-0373.

70. Vogel P., Ding Z.M., Read R., et al. Progressive Degenerative Myopathy and Myosteatosis in ASNSD1-Deficient Mice. Vet Pathol. 2020 Sep;57(5):723-735. doi: 10.1177/0300985820939251.

71. Stadion M., Schwerbel K., Graja A., et al. Increased Ifi202b/IFI16 expression stimulates adipogenesis in mice and humans. Diabetologia. 2018;61(5):1167-1179. doi: 10.1007/s00125-018-4571-9.

72. Saeed S., Ning L., Badreddine A., et al. Biallelic Mutations in P4HTM Cause Syndromic Obesity. Diabetes. 2023;72(9):1228-1234. doi: 10.2337/db22-1017.

73. Styne D.M., Arslanian S.A., Connor E.L., et al. Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2017;102(3):709-757. doi: 10.1210/jc.2016-2573.

74. Garvey W.T., Mechanick J.I., Brett E.M., et al. American association of clinical endocrinologists and American college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract. 2016;22(3):1-203. doi: 10.4158/EP161365.GL.

75. Cuda S., Censani M., Kharofa R., et al. Social consequences and genetics for the child with overweight and obesity: An obesity medicine association (OMA) clinical practice statement 2022. Obes Pillars. 2022;3:100032. doi: 10.1016/j.obpill.2022.100032.

76. Heymsfield S.B., Avena N.M., Baier L., et al. Hyperphagia: current concepts and future directions proceedings of the 2nd international conference on hyperphagia. Obesity (Silver Spring). 2014;22(1):1-17. doi: 10.1002/oby.20646.

77. Dykens E.M., Maxwell M.A., Pantino E., et al. Assessment of hyperphagia in Prader-Willi syndrome. Obesity (Silver Spring). 2007;15(7):1816-26. doi: 10.1038/oby.2007.216.

78. Stunkard A.J., Messick S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res. 1985;29(1):71-83. doi: 10.1016/0022-3999(85)90010-8.

79. Lowe M.R., Butryn M.L., Didie E.R., et al. The Power of Food Scale. A new measure of the psychological influence of the food environment. Appetite. 2009;53(1):114-8. doi: 10.1016/j.appet.2009.05.016.

80. Ohara K., Nakamura H., Kouda K., et al. Psychometric properties of the Japanese version of the Dutch Eating Behavior Questionnaire for Children. Appetite. 2020;151:104690. doi: 10.1016/j.appet.2020.104690.

81. Carvalho L.M.L., Jorge A.A.L., Bertola D.R,. et al. A Comprehensive Review of Syndromic Forms of Obesity: Genetic Etiology, ClinicalFeatures and Molecular Diagnosis. Curr Obes Rep. 2024;13(2):313-337. doi: 10.1007/s13679-023-00543-y.

82. Kehinde T.A., Bhatia A., Olarewaju B., et al. Syndromic obesity with neurodevelopmental delay: Opportunities for targeted interventions. Eur J Med Genet. 2022;65(3):104443. doi: 10.1016/j.ejmg.2022.104443.

83. Kernohan K.D., Boycott K.M. The expanding diagnostic toolbox for rare genetic diseases. Nat Rev Genet. 2024;25(6):401-415. doi: 10.1038/s41576-023-00683-w.

84. Farooqi I.S., Matarese G., Lord G.M., et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110(8):1093-103. doi: 10.1172/JCI15693.

85. Wabitsch M., Funcke J.B., von Schnurbein J., et al. Severe Early-Onset Obesity Due to Bioinactive Leptin Caused by a pN103K Mutation in the Leptin Gene. J Clin Endocrinol Metab. 2015100(9):3227-30. doi: 10.1210/jc.2015-2263.

86. Greenfield J.R., Miller J.W., Keogh J.M., et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med. 2009;360(1):44-52. doi: 10.1056/NEJMoa0803085.

87. Krishna R., Gumbiner B., Stevens C., et al. Potent and selective agonism of the melanocortin receptor 4 with MK-0493 does not induce weight loss in obese human subjects: energy intake predicts lack of weight loss efficacy. Clin Pharmacol Ther. 2009;86(6):659-66. doi: 10.1038/clpt.2009.167.

88. Falls B.A., Zhang Y. Insights into the Allosteric Mechanism of Setmelanotide (RM-493) as a Potent and First-in-Class Melanocortin-4 Receptor (MC4R) Agonist To Treat Rare Genetic Disorders of Obesity through an in Silico Approach. ACS Chem Neurosci. 2019;10(3):1055-1065. doi: 10.1021/acschemneuro.8b00346.

89. Kühnen P., Clément K., Wiegand S., et al. Proopiomelanocortin Deficiency Treated with a Melanocortin-4 Receptor Agonist. N Engl J Med. 2016;375(3):240-6. doi: 10.1056/NEJMoa1512693.

90. Clément K., van den Akker E., Argente J., et al. Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes Endocrinol. 2020;8(12):960-970. doi: 10.1016/S2213-8587(20)30364-8.

91. Haws R., Brady S., Davis E., et al. Effect of setmelanotide, a melanocortin-4 receptor agonist, on obesity in Bardet-Biedl syndrome. Diabetes Obes Metab. 2020;22(11):2133-2140. doi: 10.1111/dom.14133.

92. U.S. Food & Drug Administration. FDA approves treatment for weight management in patients with Bardet-Biedl Syndrome aged 6 or older. 2022. https://www.fda.gov/drugs/news-events-humandrugs/fda-approves-treatment-weight-management-patientsbardet-biedl-syndrome-aged-6-or-older.

93. Rhythm Pharmaceuticals. Rhythm corporate presentation. 2024. https://rhythmpharmaceuticals.gcs-web.

94. Cooiman M.I., Kleinendorst L., Aarts E.O., et al. Genetic Obesity and Bariatric Surgery Outcome in 1014 Patients with Morbid Obesity. Obes Surg. 2020;30(2):470-477. doi: 10.1007/s11695-019-04184-w.

95. Campos A., Cifuentes L., Hashem A., et al. Effects of Heterozygous Variants in the Leptin-Melanocortin Pathway on Roux-en-Y Gastric Bypass Outcomes: a 15-Year Case-Control Study. Obes Surg. 2022;32(8):2632-2640. doi: 10.1007/s11695-022-06122-9.

96. Samuels J.M., Paddu N.U., Rekulapeli A., et al. High Prevalence of Positive Genetic Obesity Variants in Postoperative Bariatric Surgery Patients with Weight Regain Presenting for Medical Obesity Intervention. Obes Surg. 2024 Jan;34(1):170-175. doi: 10.1007/s11695-023-06952-1.

97. Iepsen E.W., Zhang J., Thomsen H.S., et al. Patients with Obesity Caused by Melanocortin-4 Receptor Mutations Can Be Treated with a Glucagon-like Peptide-1 Receptor Agonist. Cell Metab. 2018;28(1):23-32.e3. doi: 10.1016/j.cmet.2018.05.008.

98. Ali S., Baig S., Wanninayake S., et al. Glucagon-like peptide-1 analogues in monogenic syndromic obesity: Real-world data from a large cohort of Alström syndrome patients. Diabetes Obes Metab. 2024;26(3):989-996. doi: 10.1111/dom.15398.

99. Welling M.S., de Groot C.J., Kleinendorst .L, et al. Effects of glucagon-like peptide-1 analogue treatment in genetic obesity: A case series. Clin Obes. 2021;11(6):e12481. doi: 10.1111/cob.12481.

100. Ng N.B.H., Low Y.W., Rajgor D.D., et al. The effects of glucagonlike peptide (GLP)-1 receptor agonists on weight and glycaemic control in Prader-Willi syndrome: A systematic review. Clin Endocrinol (Oxf). 2022;96(2):144-154. doi: 10.1111/cen.14583.

101. Romanelli S.M., Lewis K.T., Nishii A., et al. BAd-CRISPR: Inducible gene knockout in interscapular brown adipose tissue of adult mice. J Biol Chem. 2021;297(6):101402. doi: 10.1016/j.jbc.2021.101402.

102. Wang C.H., Lundh M., Fu A., et al. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci Transl Med. 2020;12(558):eaaz8664. doi: 10.1126/scitranslmed.aaz8664.

103. Raichur S., Wang S.T., Chan P.W., et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 2014;20(4):687-95. doi: 10.1016/j.cmet.2014.09.015.

104. Turpin S.M., Nicholls H.T., Willmes D.M., et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 2014;20(4):678-86. doi: 10.1016/j.cmet.2014.08.002.

105. Raichur S., Brunner B., Bielohuby M., et al. The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol Metab. 2019; 21: 36-50. doi: 10.1016/j.molmet.2018.12.008.

106. Sáenz de Urturi D., Buqué X., Porteiro B., et al. Methionine adenosyltransferase 1a antisense oligonucleotides activate the liverbrown adipose tissue axis preventing obesity and associated hepatosteatosis. Nat Commun. 2022;13(1):1096. doi: 10.1038/s41467-022-28749-z.

107. Lutkewitte A.J., Singer J.M., Shew T.M., et al. Multiple antisense oligonucleotides targeted against monoacylglycerol acyltransferase 1 (Mogat1) improve glucose metabolism independently of Mogat1. Mol Metab. 2021;49:101204. doi: 10.1016/j.molmet.2021.101204.

108. Gwag T., Li D., Ma E., et al. CD47 antisense oligonucleotide treatment attenuates obesity and its-associated metabolic dysfunction. Sci Rep. 2023 Feb 16;13(1):2748. doi: 10.1038/s41598-023-30006-2.

109. Vatner D.F., Goedeke L., Camporez J.G., et al. Angptl8 antisense oligonucleotide improves adipose lipid metabolism and prevents diet-induced NAFLD and hepatic insulin resistance in rodents. Diabetologia. 2018;61(6):1435-1446. doi: 10.1007/s00125-018-4579-1.

110. Yang W., Wang S., Loor J.J., et al. Role of diacylglycerol O-acyltransferase (DGAT) isoforms in bovine hepatic fatty acid metabolism. J Dairy Sci. 2022;105(4):3588-3600. doi: 10.3168/jds.2021-21140.

111. Parker B.L., Calkin A.C., Seldin M.M., et al. An integrative systems genetic analysis of mammalian lipid metabolism. Nature. 2019;567(7747):187-193. doi: 10.1038/s41586-019-0984-y.

112. Recio-López P., Valladolid-Acebes I., Berggren P.O., Juntti- Berggren L. Apolipoprotein CIII Reduction Protects White Adipose Tissues against Obesity-Induced Inflammation and Insulin Resistance in Mice. Int J Mol Sci. 2021;23(1):62. doi: 10.3390/ijms23010062.


Review

For citations:


Khubaeva D.G., Zolina A.A., Yurovskih Z.G., Drozhdin M.A., Khakova S.R., Kachikeeva E.A., Khusnullina A.R., Ermakov I.S., Kulakov A.A., Kolesnikov M.A., Vasileva D.V., Petrov D.A., Yusupova A.F. Monogenic obesity: modern possibilities of targeted therapy. Medical Genetics. 2025;24(2):14-30. (In Russ.) https://doi.org/10.25557/2073-7998.2025.02.14-30

Views: 770


ISSN 2073-7998 (Print)