

Violation of DNA methylation as a factor of fetal growth restriction
https://doi.org//10.25557/2073-7998.2025.02.3-13
Abstract
DNA methylation is a fundamental epigenetic modification mechanism that plays a significant role in gene activity regulation and underlies the development of various diseases. In this article, we have focused on analyzing the genome-wide studies results of DNA methylation in fetal growth restriction (FGR), which reported the identification of differentially methylated regions or genes using high-throughput technologies. Analysis of the included studies has revealed significant alterations in DNA methylation patterns in FGR, affecting 1,022 differentially methylated genes (DMGs), which are overrepresented in the processes of the immune response, the PI3K/AKT/mTOR and MAPK signaling pathways. Among these, only 4% of DMG are replicated between studies. These genes are associated with the signal transduction, cellular morphogenesis, nervous system development and cell adhesion. Additionally, we have identified a cluster of genes that not only exhibited differential methylation in placental tissue but also showed statistically significant changes in gene expression in FGR. These common genes and their products are involved in cell-cell interaction, cell migration, cytoskeleton organization, apoptosis, and nervous system development. The obtained data indicate that certain patterns of DNA methylation associated with the FGR development in the prenatal period may be the basis for increased susceptibility to diseases such as diabetes mellitus, obesity, pathologies of the bronchopulmonary system and immunological dysregulation in later life. The results of our work highlight the important role of a comprehensive analysis of DNA methylation and gene expression for the study of the genetic component underlying FGR.
Keywords
About the Authors
M. M. GavrilenkoRussian Federation
10, Naberejnaya Ushaiki, Tomsk, 634050
E. A. Trifonova
Russian Federation
10, Naberejnaya Ushaiki, Tomsk, 634050
V. A. Stepanov
Russian Federation
10, Naberejnaya Ushaiki, Tomsk, 634050
References
1. Spiers H., Hannon E., Schalkwyk L.C., et al. Methylomic trajectories across human fetal brain development. Genome research. 2015;25(3):338–352. DOI: 10.1101/gr.180273.114
2. Zaletaev D.V., Nemtsova M.V., Strelnikov V.V., et al. Diagnostics of epigenetic alterations in hereditary and oncological disorders. Molecular biology. 2004;38(2): 174-182.
3. Law P.P., Holland M.L. DNA methylation at the crossroads of gene and environment interactions. Essays in biochemistry. 2019;63(6):717–726. DOI: 10.1042/EBC20190031
4. Koukoura O., Sifakis S., Spandidos D.A. DNA methylation in the human placenta and fetal growth. Molecular medicine reports. 2012;5(4):883–889. DOI: 10.3892/mmr.2012.763
5. Madeleneau D., Buffat C., Mondon F., et al. Transcriptomic analysis of human placenta in intrauterine growth restriction. Pediatric Research. 2015;77(6):799–807. DOI: 10.1038/pr.2015.40
6. Ding Y., Cui H.. Integrated analysis of genome-wide DNA methylation and gene expression data provide a regulatory network in intrauterine growth restriction. Life Sciences. 2017;179:60–65. DOI: 10.1016/j.lfs.2017.04.020
7. Chabrun F., Huetz N., Dieu X., et al. Data-mining approach on transcriptomics and methylomics placental analysis highlights genes in fetal growth restriction. Frontiers in Genetics. 2020;10:1292. DOI: 10.3389/fgene.2019.01292
8. Lee S., Kim Y.N., Im D., et al. DNA Methylation and gene expression patterns are widely altered in fetal growth restriction and associated with FGR development. Animal Cells and Systems. 2021;25(3):128–135. DOI: 10.1080/19768354.2021.1925741
9. Roifman M., Choufani S., Turinsky A.L., et al. Genome-wide placental DNA methylation analysis of severely growth-discordant monochorionic twins reveals novel epigenetic targets for intrauterine growth restriction. Clinical epigenetics. 2016;8(1):1–13. DOI: 10.1186/s13148-016-0238-x
10. Shi D., Zhou X., Cai L., et al. Placental DNA methylation analysis of selective fetal growth restriction in monochorionic twins reveals aberrant methylated CYP11A1 gene for fetal growth restriction. The FASEB Journal. 2023;37(10): e23207. DOI: 10.1096/fj.202300742R
11. Ding J., Maxwell A., Adzibolosu N., et al. Mechanisms of immune regulation by the placenta: Role of type I interferon and interferonstimulated genes signaling during pregnancy. Immunological reviews. 2022;308(1):9–24. DOI: 10.1111/imr.13077
12. Karar J., Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Frontiers in molecular neuroscience. 2011;4:51. DOI: 10.3389/fnmol.2011.00051
13. Yoshimura Y. Integrins: expression, modulation, and signaling in fertilization, embryogenesis and implantation. The Keio journal of medicine. 1997;46(1):16–24. DOI: 10.2302/kjm.46.16
14. Hohn H.P., Denker H.W. Experimental modulation of cell-cell adhesion, invasiveness and differentiation in trophoblast cells. Cells Tissues Organs. 2002;172(3):218–236. DOI: 10.1159/000066965
15. Lokk K., Modhukur V., Rajashekar B., et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome biology. 2014;1594):1–14. DOI: 10.1186/gb-2014-15-4-r54
16. Miller R.H., Pollard C.A., Brogaard K.R., et al. Tissue-specific DNA methylation variability and its potential clinical value. Frontiers in Genetics. 2023;14:1125967. DOI: 10.3389/fgene.2023.1125967
17. Sood R., Zehnder J.L., Druzin M.L., et al. Gene expression patterns in human placenta. Proceedings of the National Academy of Sciences. 2006;103(14):5478–5483. DOI: 10.1073/pnas.0508035103
18. Suryawanshi H., Morozov P., Straus A., et al. A single-cell survey of the human first-trimester placenta and decidua. Science advances. 2018;4(10):eaau4788. DOI: 10.1126/sciadv.aau4788
19. Lo H.F., Tsai C.Y., Chen C.P., et al. Association of dysfunctional synapse defective 1 (SYDE1) with restricted fetal growth–SYDE1 regulates placental cell migration and invasion. The Journal of Pathology. 2017;241(3):324–336. DOI: 10.1002/path.4835
20. Cross J.C., Nakano H., Natale D.R., et al. Branching morphogenesis during development of placental villi. Differentiation. 2006;74(7):393–401. DOI: 10.1111/j.1432-0436.2006.00103.x
21. Nalivaeva N.N., Turner A.J., Zhuravin I.A. Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration. Frontiers in neuroscience. 2018;12:825. DOI: 10.3389/fnins.2018.00825
22. Løhaugen G.C., Østgård H.F., Andreassen S., et al. Small for gestational age and intrauterine growth restriction decreases cognitive function in young adults. The Journal of pediatrics. 2013;163(2):447– 453. DOI: 10.1016/j.jpeds.2013.01.060
23. Belot M.P., Nadéri K., Mille C., et al. Role of DNA methylation at the placental RTL1 gene locus in type 1 diabetes. Pediatric Diabetes. 2017;18(3):178–187. DOI: 10.1111/pedi.12387
24. Lundholm C., Örtqvist A.K., Lichtenstein P., et al. Impaired fetal growth decreases the risk of childhood atopic eczema: a Swedish twin study. Clinical & Experimental Allergy. 2010;40(7):1044–1053. DOI: 10.1111/j.1365-2222.2010.03519.x
25. Wang K.C., James A.L., Noble P.B. Fetal growth restriction and asthma: is the damage done?. Physiology. 2021;36(4):256–266. DOI: 10.1152/physiol.00042.2020
26. Sehgal A., Dassios T., Nold M.F., et al. Fetal growth restriction and neonatal-pediatric lung diseases: Vascular mechanistic links and therapeutic directions. Paediatric respiratory reviews. 2022;44:19– 30. DOI: 10.1016/j.prrv.2022.09.002
27. Gantenbein K.V., Kanaka-Gantenbein C. Highlighting the trajectory from intrauterine growth restriction to future obesity. Frontiers in endocrinology. 2022;13:1041718. DOI: 10.3389/fendo.2022.1041718
28. Hales C.N., Barker D.J. The thrifty phenotype hypothesis: Type 2 diabetes. British medical bulletin. 2011;60(1):5-20. DOI: 10.1093/bmb/60.1.5
29. Yzydorczyk C., Armengaud J.B., Peyter A.C., et al. Endothelial dysfunction in individuals born after fetal growth restriction: cardiovascular and renal consequences and preventive approaches. Journal of developmental origins of health and disease. 2017;8(4):448–464. DOI: 10.1017/S2040174417000265
30. Armengaud J.B., Yzydorczyk C., Siddeek B., et al. Intrauterine growth restriction: Clinical consequences on health and disease at adulthood. Reproductive Toxicology. 2021;99:168–176. DOI: 10.1016/j.reprotox.2020.10.005
31. Zhu Y.N., Pan F., Gan X.W., et al. The Role of DNMT1 and C/ EBPα in the Regulation of CYP11A1 Expression During Syncytialization of Human Placental Trophoblasts. Endocrinology. 2024;165(2):bqad195. DOI: 10.1210/endocr/bqad195
32. Liu S., Zhu N., Chen H. Expression patterns of human DAB2IP protein in fetal tissues. Biotechnic & Histochemistry. 2012;87(5):350–359. DOI: 10.3109/10520295.2012.664658
33. Shan N., Xiao X., Chen Y., et al. Expression of DAB2IP in human trophoblast and its role in trophoblast invasion. The Journal of Maternal-Fetal & Neonatal Medicine. 2016;29(3):393–399. DOI: 10.3109/14767058.2014.1001974
34. Zhang J.Y., Jiang Y., Wei L.J., et al. LncRNA HCG27 promotes glucose uptake ability of HUVECs by MiR-378a-3p/MAPK1 pathway. Current Medical Science. 2023;43(4):784-793. DOI: 10.1007/s11596-023-2738-1
35. Zeng S., Wu Y., Zhou M., et al. Association between genetic polymorphisms of leptin receptor and preeclampsia in Chinesewomen. The Journal of Maternal-Fetal & Neonatal Medicine. 2023;36(1):2207708. DOI: 10.1080/14767058.2023.2207708
36. Saad A., Adam I., Elzaki S.E.G., et al. Leptin receptor gene polymorphisms c. 668A> G and c. 1968G> C in Sudanese women with preeclampsia: a case-control study. BMC Medical Genetics. 2020;21:1–8. DOI: 10.1186/s12881-020-01104-z
37. Galindo-Cáceres M.A., Parra-Unda R., Murillo-Llanes J., et al. Association of leptin receptor expression in placenta and peripheral blood mononuclear cell with maternal weight in birth outcomes. Cytokine. 2021;138:155362. DOI: 10.1016/j.cyto.2020.155362
38. Marginean C., Marginean C.O., Iancu M., et al. The FTO rs9939609 and LEPR rs1137101 mothers–newborns gene polymorphisms and maternal fat mass index effects on anthropometric characteristics in newborns: a cross-sectional study on mothers–newborns gene polymorphisms—The FTO-LEPR Study (STROBE-compliant article). Medicine. 2016; 95(49):e5551. DOI: 10.1097/MD.0000000000005551
39. Su C., Yu T., Zhao R., et al. Subclinical thyroid disease and single nucleotide polymorphisms in reproductive-age women in areas of Shanxi Province, China, where iodine exposure is excessive. Asia Pacific Journal of Clinical Nutrition. 2018;27(6): 1366–1373. DOI: 10.6133/apjcn.201811_27(6).0024
40. Wan J.P., Zhao H., Li T., et al. The common variant rs11646213 is associated with preeclampsia in Han Chinese women. PloS one. 2013;8(8):e71202. DOI: 10.1371/journal.pone.0071202
41. Fekete A., Vér Á., Bögi K., et al. Is preeclampsia associated with higher frequency of HSP70 gene polymorphisms? European Journal of Obstetrics & Gynecology and Reproductive Biology. 2006;126(2):197–200. DOI: 10.1016/j.ejogrb.2005.08.021
42. Kaartokallio T., Cervera A., Kyllönen A., et al. Gene expression profiling of pre-eclamptic placentae by RNA sequencing. Scientific reports. 2015;5(1):14107. DOI: 10.1016/j.isci.2024.109047
43. Zhou Y., Gormley M.J., Hunkapiller N.M., et al. Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia. The Journal of clinical investigation. 2013;123(7):2862–2872. DOI: 10.1172/JCI6696
44. Eude-Le Parco I., Dallot E., Breuiller-Fouché M. Protein kinase C and human uterine contractility. BMC Pregnancy and Childbirth. 2007;7:S11. DOI: 10.1186/1471-2393-7-S1-S11
45. Metsalu T., Viltrop T., Tiirats A., et al. Using RNA sequencing for identifying gene imprinting and random monoallelic expression in human placenta. Epigenetics. 2014;9(10):1397-1409. DOI: 10.4161/15592294.2014.970052
46. Xu Y., Li W., Liu X., et al. Analysis of microRNA expression profile by small RNA sequencing in Down syndrome fetuses. International journal of molecular medicine. 2013;32(5):1115-1125. DOI: 10.3892/ijmm.2013.1499
47. Li Y., Sun C., Guo Y., et al. DIP2C polymorphisms are implicated in susceptibility and clinical phenotypes of autism spectrum disorder. Psychiatry Research. 2022;316: 114792. DOI: 10.1016/j.psychres.2022.114792
48. Ha T., Morgan A., Bartos M.N., et al. De novo variants predicting haploinsufficiency for DIP2C are associated with expressive speech delay. American Journal of Medical Genetics Part A. 2024:e63559. DOI: 10.1002/ajmg.a.63559
49. Camerota M., Lester B.M., McGowan E.C., et al. Contributions of prenatal risk factors and neonatal epigenetics to cognitive outcome in children born very preterm. Developmental Psychology. 2024;60(9):1606–1619. DOI: 10.1037/dev0001709
50. Mathews E., Dewees K., Diaz D., Favero C. White matter abnormalities in fetal alcohol spectrum disorders: focus on axon growth and guidance. Experimental Biology and Medicine. 2021;246(7):812–821. DOI: 10.1177/1535370220980398
51. Schulze K.V., Bhatt A., Azamian M.S., et al. Aberrant DNA methylation as a diagnostic biomarker of diabetic embryopathy. Genetics in Medicine. 2019;21(11):2453–2461. DOI: 10.1038/s41436-019-0516-z
52. Yang M.N., Huang R., Zheng T., et al. Genome-wide placental DNA methylations in fetal overgrowth and associations with leptin, adiponectin and fetal growth factors. Clinical Epigenetics. 2022;14(1):192. DOI: 10.1186/s13148-022-01412-6
53. Wang W.J., Huang R., Zheng T., et al. Genome-wide placental gene methylations in gestational diabetes mellitus, fetal growth and metabolic health biomarkers in cord blood. Frontiers in endocrinology. 2022;13:875180. DOI: 10.3389/fendo.2022.875180
54. Williams L., Seki Y., Delahaye F., et al. DNA hypermethylation of CD3+ T cells from cord blood of infants exposed to intrauterine growth restriction. Diabetologia. 2016;59:1714–1723. DOI: 10.1007/s00125-016-3983-7
55. Gavrilenko M.M., Trifonova E.A., Stepanov V.A. Genome-Wide Analysis in the Study of the Fetal Growth Restriction Pathogenetics. Russian Journal of Genetics. 2024;60(8):1001–1013.
56. Ehrlich M. DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics. 2019;14(12):1141–1163. DOI: 10.1080/15592294.2019.1638701
57. Botto F., Seree E., Elkhyari S., et al. Hypomethylation and hypoexpression of human CYP2E1 gene in lung tumors. Biochemical and biophysical research communications. 1994;205(2):1086–1092. DOI: 10.1006/bbrc.1994.2777
58. Rauluseviciute I., Drabløs F., Rye M.B. DNA hypermethylation associated with upregulated gene expression in prostate cancer demonstrates the diversity of epigenetic regulation. BMC medical genomics. 2020;13:1–15. DOI: 10.1186/s12920-020-0657-6
59. Zhao B., Tumaneng K., Guan K.L. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nature cell biology. 2011;13(8):877–883. DOI: 10.1038/ncb2303
60. Albers R.E., Kaufman M.R., Natale B.V., et al. Trophoblast-specific expression of Hif-1α results in preeclampsia-like symptoms and fetal growth restriction. Scientific Reports. 2019;9(1):2742. DOI: 10.1038/s41598-019-39426-5
Review
For citations:
Gavrilenko M.M., Trifonova E.A., Stepanov V.A. Violation of DNA methylation as a factor of fetal growth restriction. Medical Genetics. 2025;24(2):3-13. (In Russ.) https://doi.org//10.25557/2073-7998.2025.02.3-13