

Using CRISPR/Cas technology to generate A549 human lung cancer subline with knockout of the E2F1 gene
https://doi.org/10.25557/2073-7998.2024.11.40-46
Abstract
Despite a significant number of studies devoted to the transcription factor E2F1, its functional role in cellular processes remains ambiguous. Depending on the context, E2F1 can either support cell survival or initiate apoptosis. The present work is devoted to the possibility of using E2F1 as a therapeutic target for the combined treatment of malignant neoplasms, including through the use of inhibitors. However, the available data also indicate a potentially opposite effect of E2F1, which can negatively affect the effectiveness of therapy. This emphasizes the relevance of an in-depth study of the functional activity of E2F1 in various conditions. Transcription factors of the E2F family, including E2F1, demonstrate both overlapping functions and unique properties inherent in its individual members. Suppression of the expression of individual representatives of the family makes it possible to more accurately assess their contribution to key cellular processes. As part of the study, a subline of A549 lung cancer cells with a knockout of the E2F1 gene, carried out using CRISPR/Cas technology, was developed. Based on this cell model, experiments are planned to be carried out aimed at studying the role of E2F1 in various conditions, including responses to chemotherapeutic effects
About the Authors
М. А. ZamkovaRussian Federation
34/5, Vavilova st., Moscow, 119334;
23, Kashirskoe shosse, Moscow, 115522
D. B. Kazansky
Russian Federation
23, Kashirskoe shosse, Moscow, 115522
V. V. Tatarskiy
Russian Federation
34/5, Vavilova st., Moscow, 119334
References
1. Moriya H. Quantitative nature of overexpression experiments. Mol Biol Cell. 2015; 26: 3932-3939. doi: 10.1091/mbc.E15-07-0512.
2. Narasimhan V. M., Xue Y., Tyler-Smith C. Human Knockout Carriers: Dead, Diseased, Healthy, or Improved? Trends Mol Med. 2016; 22: 341-351. doi: 10.1016/j.molmed.2016.02.006.
3. Li H., Yang Y., Hong W., et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther. 2020; 5:1. doi: 10.1038/s41392-019-0089-y.
4. Bock C., Datlinger P., Chardon F., et al. High-content CRISPR screening. N Nat Rev Methods Primers. 2022;2(1):9. doi: 10.1038/s43586-022-00098-7.
5. Ertosun M.G., Hapil F.Z., Osman Nidai O. E2F1 transcription factor and its impact on growth factor and cytokine signaling. Cytokine Growth Factor Rev. 2016;31:17-25. doi:10.1016/j.cytogfr.2016.02.001.
6. Dubrez L. Regulation of E2F1 Transcription Factor by Ubiquitin Conjugation. Int J Mol Sci. 2017; 18(10):2188. doi: 10.3390/ijms18102188.
7. Schaal C., Pillai S., Chellappan S. P. The Rb-E2F transcriptional regulatory pathway in tumor angiogenesis and metastasis. Adv Cancer Res. 2014; 121: 147-182. doi: 10.1016/B978-0-12-800249-0.00004-4.
8. Meng P., Ghosh R. Transcription addiction: can we garner the Yin and Yang functions of E2F1 for cancer therapy? Cell Death Dis. 2014; 5: e1360. doi: 10.1038/cddis.2014.326.
9. Li J., Bi W., Lu F., Pet al. Prognostic role of E2F1 gene expression in human cancer: a meta-analysis. BMC Cancer. 2023; 23: 509. doi: 10.1186/s12885-023-10865-8.
10. Gao H., Zhou F., Li R., et al. E2F1 inhibits cellular senescence and promotes oxaliplatin resistance in colorectal cancer. Ann Transl Med. 2023; 11: 185. doi: 10.21037/atm-22-4054.
11. Zhang K., Zhang B., Bai Y., Dai L. E2F1 promotes cancer cell sensitivity to cisplatin by regulating the cellular DNA damage response through miR-26b in esophageal squamous cell carcinoma J Cancer. 2020; 11: 301-310. doi: 10.7150/jca.33983.
12. Engelmann D., Knoll S., Ewerth D., et al. Functional interplay between E2F1 and chemotherapeutic drugs defines immediate E2F1 target genes crucial for cancer cell death. Cell Mol Life Sci. 2010; 67: 931-948. doi: 10.1007/s00018-009-0222-0.
13. Chen H. Z., Tsai S. Y., Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer. 2009; 9: 785-797. doi: 10.1038/nrc2696.
14. Kong L. J., Chang J. T., Bild A. H., Nevins J. R. Compensation and specificity of function within the E2F family. Oncogene. 2007; 26: 321-327. doi: 10.1038/sj.onc.1209817.
15. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013) Genome engineering using the CRISPR-Cas9 system, Nat Protoc, 8, 2281-2308, doi: 10.1038/nprot.2013.143.
16. Persiyantseva N.A., Kazansky D.B., Tatarskiy V.V., Zamkova M.A. Redaktirovaniye genoma metodom CRISPR/Cas dlya sozdaniya sublinii kletok raka legkogo cheloveka A549, nokautnoy po genu r21 [Genome editing by CRISPR/Cas to generate A549 human lung cancer subline knockout for the р21 gene]. Meditsinskaya genetika [Medical Genetics]. 2023;22(11):35-39. (In Russ.) https://doi.org/10.25557/2073-7998.2023.11.35-39
17. Khamidullina A.I., Gandalipov E.R., Abramenko Y.E., et al.. Polucheniye opukholevykh liniy A549 i MCF7 s nokautom gena opukholevogo supressora TP53 s pomoshch’yu CRISPR/Cas9 [Creation of A549 and MCF7 tumor sublines with knockout of TP53 using CRISPR/Cas9]. Meditsinskaya genetika [Medical Genetics]. 2023;22(11):27-34. (In Russ.) https://doi.org/10.25557/2073-7998.2023.11.27-34
18. Chen X., Yu Y., Zheng H., et al. Single-cell transcriptome analysis reveals dynamic changes of the preclinical A549 cancer models, and the mechanism of dacomitinib. Eur J Pharmacol 2023; 960: 176046. doi: 10.1016/j.ejphar.2023.176046.
19. Watanabe N., Dickinson. D. A., Krzywanski D. M., Iet al. A549 subclones demonstrate heterogeneity in toxicological sensitivity and antioxidant profile. Am J Physiol Lung Cell Mol Physiol. 2002; 283: L726-736, doi: 10.1152/ajplung.00025.2002.
20. Zhu Q., Zhao X., Zhang Y., et al. Single cell multi-omics reveal intracell-line heterogeneity across human cancer cell lines. Nat Commun. 2023; 14: 8170. doi: 10.1038/s41467-023-43991-9.
21. Schnepp P. M., Shelley G., Dai J., et al. Single-Cell Transcriptomics Analysis Identifies Nuclear Protein 1 as a Regulator of Docetaxel Resistance in Prostate Cancer Cells. Mol Cancer Res. 2020; 18: 1290-1301. doi: 10.1158/1541-7786.MCR-20-0051.
22. Boettcher M., Covarrubias S., Biton A., Bet al. Tracing cellular heterogeneity in pooled genetic screens via multi-level barcoding. BMC Genomics. 2019; 20: 107. doi: 10.1186/s12864-019-5480-0.
23. Westermann L., Li Y., Gocmen B., et al. Wildtype heterogeneity contributes to clonal variability in genome edited cells. Sci Rep. 2022; 12: 18211. doi: 10.1038/s41598-022-22885-8.
24. Wilcz-Villega E., Carter E., Ironside A., et al. Macrophages induce malignant traits in mammary epithelium via IKKepsilon/TBK1 kinases and the serine biosynthesis pathway EMBO Mol Med. 2020; 12: e10491. doi: 10.15252/emmm.201910491.
25. Mo J., Borcherding N., Jo S., et al. Contrasting roles of different mismatch repair proteins in basal-like breast cancer. bioRxiv [Preprint]. 2023 Sep 13: 2023.07.20. 549745. doi:10.1101/2023.07.20.549745.
26. Yu S., Parameswaran N., Li M., et al. CRABP-II enhances pancreatic cancer cell migration and invasion by stabilizing interleukin 8 expression. Oncotarget. 2017; 8: 52432-52444. doi: 10.18632/oncotarget.14194.
27. Novakova Z., Milosevic M., Kutil Z., et al. Generation and characterization of human U-2 OS cell lines with the CRISPR/Cas9-edited protoporphyrinogen oxidase IX gene. Sci Rep. 2022; 12: 17081. doi: 10.1038/s41598-022-21147-x.
28. Muller H., Bracken A. P., Vernell R., et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 2001; 15: 267-285. doi: 10.1101/gad.864201.
29. Lewis C. S., Voelkel-Johnson C., Smith C. D. Suppression of c-Myc and RRM2 expression in pancreatic cancer cells by the sphingosine kinase-2 inhibitor ABC294640. Oncotarget. 2016; 7; 60181-60192. doi: 10.18632/oncotarget.11112.
Review
For citations:
Zamkova М.А., Kazansky D.B., Tatarskiy V.V. Using CRISPR/Cas technology to generate A549 human lung cancer subline with knockout of the E2F1 gene. Medical Genetics. 2024;23(11):40-46. (In Russ.) https://doi.org/10.25557/2073-7998.2024.11.40-46