Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Detection of recurrent chromosome 12 aneuploidy in human induced pluripotent stem cells using FISH with custom centromeric DNA-probes

https://doi.org/10.25557/2073-7998.2024.11.34-39

Abstract

Background. Approximately 20% of induced pluripotent stem cell (iPSC) lines spontaneously acquire chromosomal abnormalities, which hinders their use in research and medical applications. One rational approach for routine monitoring of genetic stability in iPSCs is the targeted detection of recurrent karyotype anomalies, 20-60% of which may involve trisomy of chromosome 12. Trisomy 12 leads to impaired differentiation capacity and replication dynamics and is associated with the rapid displacement of the euploid clone.

Aim. To develop a protocol for the production of fluorescent DNA probes for the detection of chromosome 12 aneuploidy.

Results. A two-stage protocol for obtaining DNA probes based on PCR, using genomic DNA as the template, has been developed, followed by direct click-labeling with a fluorochrome. Hybridization conditions have been optimized for iPSC lines with known euploid and aneuploid karyotypes, confirming the effectiveness and specificity of detecting chromosome 12 on metaphase spreads and in     interphase nuclei.

Conclusions. FISH using custom DNA probes enhances the availability of chromosome 12 copy number analysis in laboratories, facilitating the timely detection of functionally significant genetic abnormalities in cell lines.

About the Authors

L. И. Gumerova
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st., Moscow, 115522



D. Г. Zheglo
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st., Moscow, 115522



V. O. Pozhitnova
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st., Moscow, 115522



P. S. Sviridov
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st., Moscow, 115522



A. V. Kislova
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st., Moscow, 115522



V. V. Sviridova
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st., Moscow, 115522



D. S. Kiselev
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st., Moscow, 115522



N. С. Mingaleva
Moscow Institute of Physics and Technology; Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies
Russian Federation

9, Institutsky lane, Dolgoprudny, Моscow region,141700;

8, Baltiyskaya st., Moscow, 125315



A. Alsalloum
Moscow Institute of Physics and Technology; Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies
Russian Federation

9, Institutsky lane, Dolgoprudny, Моscow region,141700;

8, Baltiyskaya st., Moscow, 125315



E. А. Gornostal
Moscow Institute of Physics and Technology; Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies
Russian Federation

9, Institutsky lane, Dolgoprudny, Моscow region,141700;

8, Baltiyskaya st., Moscow, 125315



E. S. Voronina
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechye st., Moscow, 115522



References

1. Deng C., Ya A., Compton D.A., Godek K.M. A pluripotent developmental state confers a low fidelity of chromosome segregation. Stem Cell Reports. 2023;18(2):475-488. doi:10.1016/j.stemcr.2022.12.008.

2. Milagre I., Pereira C., Oliveira R.A. Compromised Mitotic Fidelity in Human Pluripotent Stem Cells. Int J Mol Sci. 2023 Jul 25;24(15):11933. doi:10.3390/ijms241511933.

3. Al Delbany D., Ghosh M.S., Krivec N., et al. De Novo Cancer Mutations Frequently Associate with Recurrent Chromosomal Abnormalities during Long-Term Human Pluripotent Stem Cell Culture. Cells. 2024;13(16):1395. doi:10.3390/cells13161395.

4. Stavish D., Price C.J., Gelezauskaite G., et al. Feeder-free culture of human pluripotent stem cells drives MDM4-mediated gain of chromosome 1q. Stem Cell Reports. 2024;19(8):1217-1232. doi:10.1016/j.stemcr.2024.06.003.

5. DuBose C.O., Daum J.R., Sansam C.L., Gorbsky GJ. Dynamic Features of Chromosomal Instability during Culture of Induced Pluripotent Stem Cells. Genes (Basel). 2022;13(7):1157. doi:10.3390/genes13071157.

6. Baker D., Hirst A.J., Gokhale P..J, et al. Detecting Genetic Mosaicism in Cultures of Human Pluripotent Stem Cells. Stem Cell Reports. 2016;7(5):998-1012. doi:10.1016/j.stemcr.2016.10.003.

7. Ludwig T.E., Andrews P.W., Barbaric I., et al. ISSCR standards for the use of human stem cells in basic research. Stem Cell Reports. 2023;18(9):1744-1752. doi:10.1016/j.stemcr.2023.08.003.

8. McIntire E., Taapken S., Leonhard K., Larson A.L. Genomic Stability Testing of Pluripotent Stem Cells. Curr Protoc Stem Cell Biol. 2020 Mar;52(1):e107. doi:10.1002/cpsc.107.

9. Ben-David U., Arad G., Weissbein U. et al. Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat Commun. 2014; 5, 4825. Doi:10.1038/ncomms5825.

10. Khademi N.S., Farivar S., Bazrgar M., et al. Aneuploidy Rate and Stemness in Low-Level Mosaic Human Embryonic Stem Cells in the Presence/Absence of Bortezomib, Paclitaxel, and Lapatinib. Cells Tissues Organs. 2024;213(1):17-23. doi:10.1159/000526199.

11. Lamm N., Ben-David U., Golan-Lev T., et al. Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects. Cell Stem Cell. 2016;18(2):253-61. doi:10.1016/j.stem.2015.11.003.

12. Yanagihara K., Hayashi Y., Liu Y., et al. Trisomy 12 compromises the mesendodermal differentiation propensity of human pluripotent stem cells. In Vitro Cell Dev Biol Anim. 2024;60(5):521-534. doi:10.1007/s11626-023-00824-9.

13. Contreras-Galindo R., Fischer S., Saha A.K. et al. Rapid molecular assays to study human centromere genomics. Genome Res. 2017;27(12):2040-2049. doi:10.1101/gr.219709.116.

14. Sharma R., Meister P. Generation of Inexpensive, Highly Labeled Probes for Fluorescence In Situ Hybridization (FISH). STAR Protoc. 2020;1(1):100006. doi:10.1016/j.xpro.2019.100006.

15. Lengauer C., Dunham I., Featherstone T., Cremer T. Generation of alphoid DNA probes for fluorescence in situ hybridization (FISH) using the polymerase chain reaction. Methods Mol Biol. 1994; 33: 51-61. doi: 10.1385/0-89603-280-9:51. PMID: 7894592.

16. Zhigalina D.I., Skryabin N.A., Vasilieva O.Y. et al. FISH Diagnostics of Chromosomal Translocation with the Technology of Synthesis of Locus-Specific DNA Probes Based on Long-Range PCR. Russ J Genet. 2020; 5 6:739–746. https://doi.org/10.1134/S1022795420060150

17. Durm M., Haar F.M., Hausmann M., et al. Optimization of fast-fluorescence in situ hybridization with repetitive alpha-satellite probes. Z Naturforsch C J Biosci. 1996;51(3-4):253-61. doi: 10.1515/znc-1996-3-418.

18. Пожитнова В.О., Свиридова В.В., Кислова А.В., и др. Аномалии кариотипа в линиях индуцированных плюрипотентных стволовых клеток, полученных от российских доноров. Медицинская генетика. 2023;22(12):59-66. https://doi.org/10.25557/2073-7998.2023.12.59-66

19. Dekel-Naftali M., Aviram-Goldring A., Litmanovitch T., et al. Screening of human pluripotent stem cells using CGH and FISH reveals low-grade mosaic aneuploidy and a recurrent amplification of chromosome 1q. Eur J Hum Genet. 2012;20(12):1248-55. doi: 10.1038/ejhg.2012.128.

20. Peterson S.E., Westra J.W., Rehen S.K., et al. Normal human pluripotent stem cell lines exhibit pervasive mosaic aneuploidy. PLoS One. 2011;6(8):e23018. doi: 10.1371/journal.pone.0023018


Review

For citations:


Gumerova L.И., Zheglo D.Г., Pozhitnova V.O., Sviridov P.S., Kislova A.V., Sviridova V.V., Kiselev D.S., Mingaleva N.С., Alsalloum A., Gornostal E.А., Voronina E.S. Detection of recurrent chromosome 12 aneuploidy in human induced pluripotent stem cells using FISH with custom centromeric DNA-probes. Medical Genetics. 2024;23(11):34-39. (In Russ.) https://doi.org/10.25557/2073-7998.2024.11.34-39

Views: 127


ISSN 2073-7998 (Print)