

Обзор текущих исследований по разработке генной терапии на основе геномного редактирования для лечения муковисцидоза
https://doi.org/10.25557/2073-7998.2024.09.3-17
Аннотация
Муковисцидоз (МВ) – частое моногенное заболевание, возникающее в результате мутаций в гене CFTR. Патогенетическая терапия, несмотря на ее высокую эффективность, подходит не всем пациентам, является пожизненной и сопряжена с побочными эффектами. В связи с этим в мире ведутся масштабные исследования, направленные на разработку этиотропной терапии МВ, в частности, основанные на геномном редактировании. В обзоре рассмотрены некоторые недостатки существующей терапии, описаны методы геномного редактирования и проанализированы опубликованные на текущий момент данные по генной терапии МВ с использованием методов геномного редактирования.
Об авторе
С. А. СмирнихинаРоссия
Смирнихина Светлана Анатольевна
115522, г. Москва, ул. Москворечье, д. 1
Список литературы
1. Derichs N. Targeting a genetic defect: cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis. Eur. Respir. Rev. 2013; 22: 58-65.
2. Berger H.A., Anderson M.P., Gregory R.J. et al. Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel. J. Clin. Invest. 1991; 88: 1422-31.
3. Choi J.Y., Muallem D., Kiselyov K. et al. Aberrant CFTR-dependent HCO3-transport in mutations associated with cystic fibrosis. Nature 2001; 410: 94-7.
4. Vertex Pharmaceuticals Incorporated. Trikafta (elexacaftor, tezacaftor, and ivacaftor tablets; ivacaftor tablets) [package insert]. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/212273s004lbl.pdf. Revised June 2021. Accessed January 21, 2024.
5. Merali Z. Life-changing cystic fibrosis treatment wins US$3-million Breakthrough Prize. Nature. 2023 Sep;621(7979):450-451. doi: 10.1038/d41586-023-02890-1.
6. Bacalhau M., Camargo M., Magalhães-Ghiotto G.A.V., et al. Elexacaftor-Tezacaftor-Ivacaftor: A Life-Changing Triple Combination of CFTR Modulator Drugs for Cystic Fibrosis. Pharmaceuticals (Basel). 2023 Mar 8;16(3):410. doi: 10.3390/ph16030410.
7. Manciulli T., Bresci S., Mencarini J., et al. Prevalence of adverse events in cystic fibrosis patients treated with elexacaftor/tezacaftor/ivacaftor: Experience of the regional referral center in Tuscany, Italy. Pediatr Pulmonol. 2023 Dec;58(12):3626-3629. doi: 10.1002/ppul.26673.
8. Zhang L., Albon D., Jones M., Bruschwein H. Impact of elexacaftor/ tezacaftor/ivacaftor on depression and anxiety in cystic fibrosis. Ther Adv Respir Dis. 2022 Jan-Dec;16:17534666221144211. doi: 10.1177/17534666221144211.
9. Arslan M., Chalmers S., Rentfrow K., et al. Suicide attempts in adolescents with cystic fibrosis on Elexacaftor/Tezacaftor/Ivacaftor therapy. J Cyst Fibros. 2023 May;22(3):427-430. doi: 10.1016/j.jcf.2023.01.015.
10. Калиновская Е. В России зарегистрирован тройной комбинированный препарат от муковисцидоза, Фармацевтический вестник, 19.06.2023, https://pharmvestnik.ru/content/news/V-Rossii-zaregistrirovan-troinoi-kombinirovannyi-preparatot-mukoviscidoza.html. Дата доступа: 23.01.2024
11. Aposhian H.V. The use of DNA for gene therapy--the need, experimental approach, and implications. Perspect Biol Med. 1970 Autumn;14(1):98-108. doi: 10.1353/pbm.1970.0011.
12. Collins F.S., Riordan J.R., Tsui L.C. The cystic fibrosis gene: isolation and significance. Hosp Pract (Off Ed). 1990 Oct 15;25(10):47- 57. doi: 10.1080/21548331.1990.11704019.
13. Aitken M.L., Moss R.B., Waltz D.A., et al. A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease. Hum Gene Ther. 2001 Oct 10;12(15):1907-16. doi: 10.1089/104303401753153956.
14. Flotte T.R., Schwiebert E.M., Zeitlin P.L., Carter B.J., Guggino W.B. Correlation between DNA transfer and cystic fibrosis airway epithelial cell correction after recombinant adeno-associated virus serotype 2 gene therapy. Hum Gene Ther. 2005 Aug;16(8):921-8. doi: 10.1089/hum.2005.16.921.
15. Flotte T.R., Zeitlin P.L., Reynolds T.C., et al. Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study. Hum Gene Ther. 2003 Jul 20;14(11):1079-88. doi: 10.1089/104303403322124792.
16. Alton E.W.F.W., Armstrong D.K., Ashby D., Bayfield K.J., Bilton D., Bloomfield E.V., et al. A randomised, double-blind, placebo-controlled trial of repeated nebulisation of non-viral cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy in patients with cystic fibrosis. Efficacy Mech Eval 2016;3(5) doi: 10.3310/eme03050
17. Cox D.B., Platt R.J., Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015 Feb;21(2):121-31. doi: 10.1038/nm.3793.
18. Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016 May 19;533(7603):420-4. doi: 10.1038/nature17946.
19. Anzalone A.V., Randolph P.B., Davis J.R., et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019 Dec;576(7785):149-157. doi: 10.1038/s41586-019-1711-4.
20. Farmen S.L., Karp P.H., Ng P., et al. Gene transfer of CFTR to airway epithelia: low levels of expression are sufficient to correct Cltransport and overexpression can generate basolateral CFTR. Am J Physiol Lung Cell Mol Physiol. 2005 Dec;289(6):L1123-30. doi: 10.1152/ajplung.00049.2005.
21. Johnson L.G., Olsen J.C., Sarkadi B., et al.. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet. 1992 Sep;2(1):21-5. doi: 10.1038/ng0992-21.
22. Limberis M., Anson D.S., Fuller M., Parsons D.W. Recovery of airway cystic fibrosis transmembrane conductance regulator function in mice with cystic fibrosis after single-dose lentivirus-mediated gene transfer. Hum Gene Ther. 2002 Nov 1;13(16):1961-70. doi: 10.1089/10430340260355365. Erratum in: Hum Gene Ther. 2002 Nov 20;13(17)2112.
23. Stocker A.G., Kremer K.L., Koldej R., et al. Single-dose lentiviral gene transfer for lifetime airway gene expression. J Gene Med. 2009 Oct;11(10):861-7. doi: 10.1002/jgm.1368.
24. Farrow N., Cmielewski .P, Delhove J., et al. Towards Human Translation of Lentiviral Airway Gene Delivery for Cystic Fibrosis: A OneMonth CFTR and Reporter Gene Study in Marmosets. Hum Gene Ther. 2021 Aug;32(15-16):806-816. doi: 10.1089/hum.2020.267.
25. Reyne N., Cmielewski P., McCarron A., et al. Single-Dose Lentiviral Mediated Gene Therapy Recovers CFTR Function in Cystic Fibrosis Knockout Rats. Front Pharmacol. 2021 May 18;12:682299. doi: 10.3389/fphar.2021.682299.
26. Cooney A.L., Abou Alaiwa M.H., Shah V.S., et al. Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight. 2016 Sep 8;1(14):e88730. doi: 10.1172/jci.insight.88730.
27. Cooney A.L., Singh B.K., Loza L.M., et al. Widespread airway distribution and short-term phenotypic correction of cystic fibrosis pigs following aerosol delivery of piggyBac/adenovirus. Nucleic Acids Res. 2018 Oct 12;46(18):9591-9600. doi: 10.1093/nar/gky773.
28. Trimidal S. G., Benjamin R., Bae J. E., et al. Can Designer Indels Be Tailored by Gene Editing?. BioEssays 2019, 41, 1900126. https://doi.org/10.1002/bies.201900126
29. Kim Y.G., Cha J., Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1156-1160.
30. Cermak T., Doyle E.L., Christian M., et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011 Jul;39(12):e82.
31. Jinek M., Chylinski K., Fonfara I., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012 Aug 17;337(6096):816-821.
32. Mullard A. CRISPR pioneers win Nobel prize. Nat Rev Drug Discov. 2020 Dec;19(12):827. doi: 10.1038/d41573-020-00198-7.
33. ClinicalTrials.gov. National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, https://clinicaltrials.gov (дата доступа 18.01.2024 г.)
34. Gaudelli N.M., Komor A.C., Rees H.A., et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017 Nov 23;551(7681):464-471. doi: 10.1038/nature24644. Erratum in: Nature. 2018 May 2.
35. Rees H.A., Liu D.R. Base editing: precision chemistry on the genome and transcriptome of living cells [published correction appears in Nat Rev Genet. 2018 Oct 19;:]. Nat Rev Genet. 2018;19(12):770- 788. doi:10.1038/s41576-018-0059-1
36. Geurts M.H., de Poel E., Amatngalim G.D., et al. CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank. Cell Stem Cell. 2020 Apr 2;26(4):503-510.e7. doi: 10.1016/j.stem.2020.01.019. Epub 2020 Feb 20. PMID: 32084388.
37. Philippidis A. CASGEVY Makes History as FDA Approves First CRISPR/Cas9 Genome Edited Therapy. Hum Gene Ther. 2024 Jan;35(1-2):1-4. doi: 10.1089/hum.2023.29263.bfs.
38. Gillmore J.D., Gane E., Taubel J., et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N Engl J Med. 2021 Aug 5;385(6):493-502. doi: 10.1056/NEJMoa2107454.
39. Suzuki S., Chosa K., Barillà C., et al. Seamless Gene Correction in the Human Cystic Fibrosis Transmembrane Conductance Regulator Locus by Vector Replacement and Vector Insertion Events. Front Genome Ed. 2022 Apr 6;4:843885. doi: 10.3389/fgeed.2022.843885.
40. Cuevas-Ocaña S., Yang J.Y., Aushev M., et al. A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells. Int J Mol Sci. 2023 Jun 17;24(12):10266. doi: 10.3390/ijms241210266.
41. Krishnamurthy S., Traore S., Cooney A.L., et al. Functional correction of CFTR mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Res. 2021 Oct 11;49(18):10558- 10572. doi: 10.1093/nar/gkab788.
42. Bednarski C., Tomczak K., Vom Hövel B., et al. Targeted Integration of a Super-Exon into the CFTR Locus Leads to Functional Correction of a Cystic Fibrosis Cell Line Model. PLoS One 2016; 11(8): e0161072.
43. Vaidyanathan S., Salahudeen A.A., Sellers Z.M., et al. High-Efficiency, Selection-free Gene Repair in Airway Stem Cells from Cystic Fibrosis Patients Rescues CFTR Function in Differentiated Epithelia. Cell Stem Cell. 2020 Feb 6;26(2):161-171.e4. doi: 10.1016/j.stem.2019.11.002.
44. Wei T., Sun Y., Cheng Q., et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat Commun. 2023 Nov 11;14(1):7322. doi: 10.1038/s41467-023-42948-2.
45. Mention K., Cavusoglu-Doran K., Joynt A.T., et al. Use of adenine base editing and homology-independent targeted integration strategies to correct the cystic fibrosis causing variant, W1282X. Hum Mol Genet. 2023 Nov 17;32(23):3237-3248. doi: 10.1093/hmg/ddad143.
46. Dekkers J.F,. Wiegerinck C.L., de Jonge H.R., et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 2013 Jul;19(7):939-45. doi: 10.1038/nm.3201.
47. Sato T., Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science. 2013 Jun 7;340(6137):1190-4. doi: 10.1126/science.1234852.
48. Miller A.J., Hill D.R., Nagy M.S., et al. In Vitro Induction and In Vivo Engraftment of Lung Bud Tip Progenitor Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports. 2018 Jan 9;10(1):101-119. doi: 10.1016/j.stemcr.2017.11.012.
49. Demchenko A., Kondrateva E., Tabakov V., et al. Airway and Lung Organoids from Human-Induced Pluripotent Stem Cells Can Be Used to Assess CFTR Conductance. Int. J. Mol. Sci. 2023, 24, 6293. https://doi.org/10.3390/ijms24076293.
50. Miller A.J., Dye B.R., Ferrer-Torres D., et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc. 2019 Feb;14(2):518-540. doi: 10.1038/s41596-018-0104-8.
51. Parekh K.R., Nawroth J., Pai A., et al. Stem cells and lung regeneration. Am J Physiol Cell Physiol. 2020 Oct 1;319(4):C675-C693. doi: 10.1152/ajpcell.00036.2020.
52. Della Latta V., Cecchettini A., Del Ry S., Morales M.A. Bleomycin in the setting of lung fibrosis induction: From biological mechanisms to counteractions. Pharmacol Res. 2015 Jul;97:122-30. doi: 10.1016/j.phrs.2015.04.012.
53. Rosen C., Shezen E., Aronovich A., et al. Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice. Nat Med. 2015 Aug;21(8):869-79. doi: 10.1038/nm.3889.
54. Loi R., Beckett T., Goncz K.K., Suratt B.T., Weiss D.J. Limited restoration of cystic fibrosis lung epithelium in vivo with adult bone marrow-derived cells. Am J Respir Crit Care Med. 2006 Jan 15;173(2):171-9. doi: 10.1164/rccm.200502-309OC.
55. Gutierrez-Aranda I., Ramos-Mejia V., Bueno C., et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010 Sep;28(9):1568-70. doi: 10.1002/stem.471.
56. Liu Z., Tang Y., Lü S., et al. The tumourigenicity of iPS cells and their differentiated derivates. J Cell Mol Med. 2013 Jun;17(6):782-91. doi: 10.1111/jcmm.12062.
57. Lee C.M., Flynn R., Hollywood J.A., et al. Correction of the ΔF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Gene by Zinc-Finger Nuclease Homology-Directed Repair. Biores. Open Access. 2012; 1(3): 99-108.
58. Schwank G., Koo B.K., Sasselli V., et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013; 13(6): 653-8.
59. Firth A.L., Menon T., Parker G.S., et al. Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Rep. 2015; 12(9): 1385-90.
60. Crane A.M., Kramer P., Bui J.H., et al. Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports 2015; 4(4): 569-77.
61. Hollywood J.A., Lee C.M., Scallan M.F., et al. Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CFTR gene. Sci. Rep. 2016; 6: 32230.
62. Suzuki S., Sargent R.G., Illek B., et al. TALENs Facilitate Single-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Submucosal Gland Cell-derived CF-iPSCs. Mol. Ther. Nucleic Acids. 2016; 5: e273.
63. Merkert S., Bednarski C., Göhring G., et al. Generation of a gene-corrected isogenic control iPSC line from cystic fibrosis patient-specific iPSCs homozygous for p.Phe508del mutation mediated by TALENs and ssODN. Stem Cell Res. 2017; 23: 95-7.
64. Peters-Hall J.R., Coquelin M.L., Torres M.J., et al. Long-term culture and cloning of primary human bronchial basal cells that maintain multipotent differentiation capacity and CFTR channel function. Am J Physiol Lung Cell Mol Physiol. 2018 Aug 1;315(2):L313-L327. doi: 10.1152/ajplung.00355.2017.
65. Suzuki S., Crane A.M., Anirudhan V., et al. Highly Efficient Gene Editing of Cystic Fibrosis Patient-Derived Airway Basal Cells Results in Functional CFTR Correction. Mol Ther. 2020 Jul 8;28(7):1684-1695. doi: 10.1016/j.ymthe.2020.04.021.
66. Fleischer A., Vallejo-Díez S., Martín-Fernández J.M., et al. iPSC-Derived Intestinal Organoids from Cystic Fibrosis Patients Acquire CFTR Activity upon TALEN-Mediated Repair of the p.F508del Mutation. Mol Ther Methods Clin Dev. 2020 Apr 18;17:858-870. doi: 10.1016/j.omtm.2020.04.005.
67. Palmer D.J., Turner D.L., Ng P. A Single “All-in-One” Helper-Dependent Adenovirus to Deliver Donor DNA and CRISPR/Cas9 for Efficient Homology-Directed Repair. Mol Ther Methods Clin Dev. 2020 Feb 4;17:441-447. doi: 10.1016/j.omtm.2020.01.014.
68. Geurts M.H., de Poel E., Pleguezuelos-Manzano C., et al. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci Alliance. 2021 Aug 9;4(10):e202000940. doi: 10.26508/lsa.202000940.
69. Ruan J., Hirai H., Yang D., et al. Efficient Gene Editing at Major CFTR Mutation Loci. Mol Ther Nucleic Acids. 2019 Jun 7;16:73- 81. doi: 10.1016/j.omtn.2019.02.006.
70. Bulcaen M., Kortleven P., Liu R.B., et al. Prime editing functionally corrects cystic fibrosis-causing CFTR mutations in human organoids and airway epithelial cells. Cell Rep Med. 2024 May 21;5(5):101544. doi: 10.1016/j.xcrm.2024.101544.
71. Sanz D.J., Hollywood J.A., Scallan M.F., et al. Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA. PLoS One 2017; 12(9): e0184009.
72. Maule G., Casini A., Montagna C., et al. Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing. Nat Commun. 2019 Aug 7;10(1):3556. doi: 10.1038/s41467-019-11454-9.
73. Sanz D.J., Harrison P.T. Minigene assay to Evaluate CRISPR/Cas9- based excision of Intronic mutations that Cause Aberrant Splicing in Human Cells. Bio Protoc. 2019 Jun 5;9(11):e3251. doi: 10.21769/BioProtoc.3251.
74. Melfi R., Cancemi P., Chiavetta R., et al. Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons. Int J Mol Sci. 2020 Jul 6;21(13):4781. doi: 10.3390/ijms21134781.
75. Erwood S., Laselva O., Bily T.M.I., et al. Allele-Specific Prevention of Nonsense-Mediated Decay in Cystic Fibrosis Using Homology-Independent Genome Editing. Mol Ther Methods Clin Dev. 2020 May 12;17:1118-1128. doi: 10.1016/j.omtm.2020.05.002.
76. Santos L., Mention K., Cavusoglu-Doran K., et al. Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation. J Cyst Fibros. 2021 Jun 5:S1569- 1993(21)00167-3. doi: 10.1016/j.jcf.2021.05.014.
77. Chiavetta R.F., Titoli S., Barra V., et al. Site-Specific RNA Editing of Stop Mutations in the CFTR mRNA of Human Bronchial Cultured Cells. Int J Mol Sci. 2023 Jun 30;24(13):10940. doi: 10.3390/ijms241310940.
78. Li C., Liu Z., Anderson J., et al. Prime editing-mediated correction of the CFTR W1282X mutation in iPSCs and derived airway epithelial cells. PLoS One. 2023 Nov 29;18(11):e0295009. doi: 10.1371/journal.pone.0295009.
79. Amistadi S., Maule G., Ciciani M., et al. Functional restoration of a CFTR splicing mutation through RNA delivery of CRISPR adenine base editor. Mol Ther. 2023 Jun 7;31(6):1647-1660. doi: 10.1016/j.ymthe.2023.03.004.
80. Walker A.J., Graham C., Greenwood M., et al. Molecular and functional correction of a deep intronic splicing mutation in CFTR by CRISPR-Cas9 gene editing. Mol Ther Methods Clin Dev. 2023 Oct 18;31:101140. doi: 10.1016/j.omtm.2023.101140.
81. Joynt A.T., Kavanagh E.W., Newby G.A., et al. Protospacer modification improves base editing of a canonical splice site variant and recovery of CFTR function in human airway epithelial cells. Mol Ther Nucleic Acids. 2023 Jun 29;33:335-350. doi: 10.1016/j.omtn.2023.06.020.
82. Кондратьева Е.В., Демченко А.Г., Лавров А.В., Смирнихина С.А. Редактирование мутации c.3846G>A (p.Trp1282*) в гене CFTR в ИПСК с использованием аденинового редактора. Медицинская генетика. 2023; 22(11): 20-26. Doi: 10.25557/2073-7998.2023.11.20-26
83. Kulhankova K., Traore S., Cheng X., et al. Shuttle peptide delivers base editor RNPs to rhesus monkey airway epithelial cells in vivo. Nat Commun. 2023 Dec 5;14(1):8051. doi: 10.1038/s41467-023-43904-w.
84. Cystic Fibrosis Foundation Patient Registry 2021 Annual Data Report, Bethesda, Maryland, Cystic Fibrosis Foundation. https://www.cff.org/medical-professionals/patient-registry. Дата доступа: 22.01.2024
85. UK Cystic Fibrosis Registry 2022 Annual Data Report, 2023, https://www.cysticfibrosis.org.uk/sites/default/files/2023-12/CFT_2022_Annual_Data_Report_Dec2023.pdf. Дата доступа: 22.01.2024
86. Petrova N., Balinova N., Marakhonov A., Vasilyeva T., Kashirskaya N., Galkina V., Ginter E., Kutsev S., Zinchenko R. Ethnic Differences in the Frequency of CFTR Gene Mutations in Populations of the European and North Caucasian Part of the Russian Federation. Front Genet. 2021 Jun 16;12:678374. doi: 10.3389/fgene.2021.678374
87. Регистр пациентов с муковисцидозом в Российской Федерации. 2021 год./ Под редакцией С.А. Красовского, М.А. Стариновой, А.Ю. Воронковой, Е.Л. Амелиной, Н.Ю. Каширской, Е.И. Кондратьевой, Л.П. Назаренко – СПб.: Благотворительный фонд «Острова», 2023, 81 с.
88. Maeder M.L., Thibodeau-Beganny S., Osiak A., et al. Rapid “opensource” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 2008 Jul 25;31(2):294-301. doi: 10.1016/j.molcel.2008.06.016.
89. Ramalingam S., London V., Kandavelou K., et al. Generation and genetic engineering of human induced pluripotent stem cells using designed zinc finger nucleases. Stem Cells Dev. 2013; 22(4): 595-610.
90. Xia E., Zhang Y., Cao H., et al. TALEN-Mediated Gene Targeting for Cystic Fibrosis-Gene Therapy. Genes (Basel). 2019 Jan 11;10(1):39. doi: 10.3390/genes10010039.
91. Vaidyanathan S., Kerschner J.L., Paranjapye A., et al. Investigating adverse genomic and regulatory changes caused by replacement of the full-length CFTR cDNA using Cas9 and AAV. Mol Ther Nucleic Acids. 2024 Feb 2;35(1):102134. doi: 10.1016/j.omtn.2024.102134
Рецензия
Для цитирования:
Смирнихина С.А. Обзор текущих исследований по разработке генной терапии на основе геномного редактирования для лечения муковисцидоза. Медицинская генетика. 2024;23(9):3-17. https://doi.org/10.25557/2073-7998.2024.09.3-17
For citation:
Smirnikhina S.A. Review of current research on the development of gene therapy for cystic fibrosis using genome editing techniques. Medical Genetics. 2024;23(9):3-17. (In Russ.) https://doi.org/10.25557/2073-7998.2024.09.3-17