Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Significance of semaphorins in the pathogenesis of obesity development

https://doi.org/10.25557/2073-7998.2024.08.3-12

Abstract

Childhood obesity is a major public health problem due to genetic and environmental factors. Despite significant advances in understanding the genetic basis of obesity, diagnosis and treatment of this disease in children remain challenging. This article focuses on semaphorins, a family of proteins that play an important role in the regulation of the leptin signaling pathway and are associated with early obesity. In addition, the publication outlines a review on the potential effects of semaphorins on appetite and metabolism, which may have implications for understanding the pathogenesis of childhood obesity. We emphasize the need for further investigation of semaphorins as potential markers and therapeutic targets in the fight against childhood obesity, which may help to improve the
diagnosis and treatment of this disease in children.

About the Authors

A. F. Nikolaeva
Research Centre for Medical Genetics
Russian Federation

Aleksandra F. Nikolaeva

1 Moskvorechye str., Moscow, 115522



N. A. Semenova
Research Centre for Medical Genetics
Russian Federation

Semenova N. A.

1 Moskvorechye str., Moscow, 115522



T. V. Strokova
Federal Research Centre of Nutrition, Biotechnology and Food Safety
Russian Federation

Strokova T. V.

2/14 Ustiinsky dr., Moscow, 109240



M. V. Bulak
Research Centre for Medical Genetics
Russian Federation

Bulak M. V.

1 Moskvorechye str., Moscow, 115522



V. O. Sigin
Research Centre for Medical Genetics
Russian Federation

Sigin V. O.

1 Moskvorechye str., Moscow, 115522



References

1. Dubern B., Faccioli N., Poitou C., Clément K. Novel therapeutics in rare genetic obesities: A narrative review. Pharmacol Res. 2023;191: 106763. doi:10.1016/j.phrs.2023.106763

2. da Fonseca A.C.P., Mastronardi C., Johar A., Arcos-Burgos M., PazFilho G. Genetics of non-syndromic childhood obesity and the use of high-throughput DNA sequencing technologies. J Diabetes Complications. 2017; 31(10):1549-1561. doi:10.1016/j.jdiacomp.2017.04.026

3. Littleton S.H., Berkowitz R.I., Grant S.F.A. Genetic Determinants of Childhood Obesity. Mol Diagn Ther. 2020; 24(6):653-663. doi:10.1007/s40291-020-00496-1

4. Greenfield J.R., Miller J.W., Keogh J.M., et al. Modulation of Blood Pressure by Central Melanocortinergic Pathways. New England Journal of Medicine. 2009; 360(1):44-52. doi:10.1056/nejmoa0803085

5. Duis J., Butler M.G. Syndromic and Nonsyndromic Obesity: Underlying Genetic Causes in Humans. Adv Biol. 2022;6(10). doi:10.1002/adbi.202101154

6. Albuquerque D., Stice E., Rodríguez-López R., Manco L., Nóbrega C. Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Molecular Genetics and Genomics. 2015; 290(4):1191-221. doi:10.1007/s00438-015-1015-9

7. Geets E., Meuwissen M.E.C., Van Hul W. Clinical, molecular genetics and therapeutic aspects of syndromic obesity. Clin Genet. 2019; 95(1):23-40. doi:10.1111/cge.13367

8. Mahmoud R., Kimonis V., Butler M.G. Genetics of Obesity in Humans: A Clinical Review. Int J Mol Sci. 2022; 23(19):11005. doi:10.3390/ijms231911005

9. Loos R.J.F., Janssens A.C.J.W. Predicting Polygenic Obesity Using Genetic Information. Cell Metab. 2017; 25(3):535-543. doi:10.1016/j.cmet.2017.02.013

10. Vourdoumpa A., Paltoglou G., Charmandari E. The Genetic Basis of Childhood Obesity: A Systematic Review. Nutrients. 2023; 15(6):1416. doi:10.3390/nu15061416

11. Loos R.J.F., Yeo G.S.H. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022; 23:120–133. doi:10.1038/s41576-021-00414-z

12. Yengo L., Sidorenko J., Kemper K.E., et al. Meta-analysis of genomewide association studies for height and body mass index in ~700 000 individuals of European ancestry. Hum Mol Genet. 2018; 27(20):3641- 3649. doi:10.1093/hmg/ddy271

13. Singh R.K., Kumar P., Mahalingam K. Molecular genetics of human obesity: A comprehensive review. C R Biol. 2017; 340(2):87-108. doi:10.1016/j.crvi.2016.11.007

14. Sanghera D.K., Bejar C., Sharma S., Gupta R., Blackett P.R. Obesity genetics and cardiometabolic health: Potential for risk prediction. Diabetes Obes Metab. 2019; 21(5):1088-1100. doi:10.1111/dom.13641

15. Khatibi N., Setayesh L., Yarizade H., Mirzababaei A., Sajadi F., Mirzaei K. Interactions between dietary patterns with the age of onset of obesity and body composition among obese and overweight female: A cross –sectional study. Clin Nutr ESPEN. 2021; 44:324-330. doi:10.1016/j.clnesp.2021.05.024

16. Wadden T.A., Tronieri J.S., Butryn M.L. Lifestyle modification approaches for the treatment of obesity in adults. Am Psychol. 2020; 75(2):235-251. doi:10.1037/amp0000517

17. Peterkova V.A., Bezlepkina O.B., Bolotova N.V., et al. Clinical guidelines «Obesity in children». Problems of Endocrinology. 2021;67(5):67-83. doi:10.14341/probl12802

18. Kleinendorst L., van Haelst M.M., van den Akker E.L.T. Genetics of Obesity. In: Experientia Supplementum (2012). Vol 111. ; 2019. doi:10.1007/978-3-030-25905-1_19

19. Koves I.H., Roth C. Genetic and Syndromic Causes of Obesity and its Management. Indian J Pediatr. 2018; 85(6):478-485. doi:10.1007/s12098-017-2502-2

20. Roth L., Koncina E., Satkauskas S., Crémel G., Aunis D., Bagnard D. The many faces of semaphorins: From development to pathology. Cellular and Molecular Life Sciences. 2009; 66(4):649-66. doi:10.1007/s00018-008-8518-z

21. Yazdani U., Terman J.R. The semaphorins. Genome Biol. 2006;7(3):211. doi: 10.1186/gb-2006-7-3-211.

22. Unified nomenclature for the semaphorins/collapsins. Semaphorin Nomenclature Committee. Cell. 1999 May 28;97(5):551-2. doi: 10.1016/s0092-8674(00)80766-7.

23. Iragavarapu-Charyulu V., Wojcikiewicz E., Urdaneta A. Semaphorins in Angiogenesis and Autoimmune Diseases: Therapeutic Targets? Front Immunol. 2020; 11:346. doi:10.3389/fimmu.2020.00346

24. Cheng S., Özkan E. Finally on Track: Interactions of Off-Track with Plex-Sema Pathway and Glycosaminoglycans. Structure. 2020; 28(5):492-494. doi:10.1016/j.str.2020.04.014

25. Kolodkin A.L., Matthes D.J., Goodman C.S. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell. 1993; 75(7):1389-99. doi:10.1016/0092-8674(93)90625-Z

26. Zhou Y., Gunput R.A.F., Pasterkamp R.J. Semaphorin signaling: progress made and promises ahead. Trends Biochem Sci. 2008; 33(4):161-70. doi:10.1016/j.tibs.2008.01.006

27. Tamagnone L., Comoglio P.M. Signalling by semaphorin receptors: Cell guidance and beyond. Trends Cell Biol. 2000; 10(9):377-83. doi:10.1016/S0962-8924(00)01816-X

28. Nakanishi Y., Kang S, Kumanogoh A. Axon guidance molecules in immunometabolic diseases. Inflamm Regen. 2022; 42(1):5. doi:10.1186/s41232-021-00189-0

29. Quintremil S., Medina Ferrer F., Puente J., Elsa Pando M, Antonieta Valenzuela M. Roles of Semaphorins in Neurodegenerative Diseases. In: Neurons - Dendrites and Axons. ; 2019. doi:10.5772/intechopen.82046

30. Jiang H., Chen C., Sun Q., et al. The role of semaphorin 4D in tumor development and angiogenesis in human breast cancer. Onco Targets Ther. 2016; 26;9:5737-5750. doi:10.2147/OTT.S114708

31. Kuznetsova E.B., Pudova E.A., Tanas A.S., Zaletaev D.V., Strelnikov V.V. SEMA6B is a candidate tumor suppressor gene in the critical chromosome region 19P13.3. Medical Genetics. 2013; 12(2): 32-36. (In Russ.)

32. Kuznetsova E.B., Kekeeva T. V., Larin S.S., et al. Novel markers of gene methylation and expression in breast cancer. Mol Biol. 2007; 41: 562-570. doi:10.1134/S0026893307040061

33. Yoshida Y., Ogata A., Kang S., et al. Semaphorin 4D contributes to rheumatoid arthritis by inducing inflammatory cytokine production: Pathogenic and therapeutic implications. Arthritis and Rheumatology. 2015; 67(6):1481-90. doi:10.1002/art.39086

34. Gutiérrez-Franco A., Eixarch H., Costa C., et al. Semaphorin 7A as a Potential Therapeutic Target for Multiple Sclerosis. Mol Neurobiol. 2017; 54(6):4820-4831. doi:10.1007/s12035-016-0154-2

35. van der Klaauw A.A., Croizier S., Mendes de Oliveira E., et al. Human Semaphorin 3 Variants Link Melanocortin Circuit Development and Energy Balance. Cell. 2019; 176(4):729-742.e18. doi:10.1016/j.cell.2018.12.009

36. Lu Q., Zhu L. The role of semaphorins in metabolic disorders. Int J Mol Sci. 2020; 21(16):5641. doi:10.3390/ijms21165641

37. Fujisawa H. Discovery of Semaphorin Receptors, Neuropilin and Plexin, and Their Functions in Neural Development. J Neurobiol. 2004; 59(1):24-33. doi:10.1002/neu.10337

38. Verhagen M.G., Pasterkamp R.J. Axon guidance: semaphorin/neuropilin/plexin signaling. In: Cellular Migration and Formation of Axons and Dendrites: Comprehensive Developmental Neuroscience. 2020. doi:10.1016/B978-0-12-814407-7.00005-5

39. Tamagnone L., Artigiani S., Chen H., et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell. 1999; 99(1):71-80. doi:10.1016/S0092-8674(00)80063-X

40. Toledano S., Nir-Zvi I., Engelman R., Kessler O. Neufeld G. Class-3 semaphorins and their receptors: Potent multifunctional modulators of tumor progression. Int J Mol Sci. 2019; 20(3):556. doi:10.3390/ijms20030556

41. Wannemacher K.M., Wang L., Zhu L., Brass L.F. The role of semaphorins and their receptors in platelets: Lessons learned from neuronal and immune synapses. Platelets. 2011; 22(6):461-5. doi:10.3109/09537104.2011.561891

42. Nogi T., Yasui N., Mihara E., et al. Structural basis for semaphorin signalling through the plexin receptor. Nature. 2010; 467, 1123–1127. doi:10.1038/nature09473

43. Liu X., Tan N., Zhou Y., et al. Semaphorin 3A Shifts Adipose Mesenchymal Stem Cells towards Osteogenic Phenotype and Promotes Bone Regeneration In Vivo. Stem Cells Int. 2016;2016:2545214. doi:10.1155/2016/2545214

44. Shimizu I., Yoshida Y., Moriya J., et al. Semaphorin3E-induced inflammation contributes to insulin resistance in dietary obesity. Cell Metab. 2013; 18(4):491-504. doi:10.1016/j.cmet.2013.09.001

45. Yoshida Y., Shimizu I., Hayashi Y., et al. Peptide vaccine for semaphorin3E ameliorates systemic glucose intolerance in mice with dietary obesity. Sci Rep. 2019; 9: 3858. doi:10.1038/s41598-019-40325-y

46. Berra M., Khattab A., Ten S.B., Bhangoo A.P.S. FRI047 Clinical Characteristics Of Patients With Morbid Obesity With Semaphorines (SEMA3D,E,G) And PLXNA3&4 Gene Variants. J Endocr Soc. 2023; 7(Suppl 1):bvad114.058.. doi:10.1210/jendso/bvad114.058.


Review

For citations:


Nikolaeva A.F., Semenova N.A., Strokova T.V., Bulak M.V., Sigin V.O. Significance of semaphorins in the pathogenesis of obesity development. Medical Genetics. 2024;23(8):3-12. (In Russ.) https://doi.org/10.25557/2073-7998.2024.08.3-12

Views: 196


ISSN 2073-7998 (Print)