

The optimized method for identifying copy number variation (CNV) at the STRC locus
https://doi.org/10.25557/2073-7998.2024.07.42-50
Abstract
Mutational changes in the STRC gene cause an autosomal recessive form of hearing loss (HL) type 16 (DFNB16, OMIM 603720), which in most cases is characterized by non-progressive, mild or moderate HL. One of the troubles of the testing STRC gene variants is the presence of the STRCP1 pseudogene (99.6% identity). In this regard, to detect and confirm various types of STRC mutations, a combined approach is used, since no single method detects all types of mutations. In this work, on a sample of 124 GJB2-negative patients with HL in Yakutia, we used optimized method for identifying copy number variations (CNVs) in the STRC locus, which allows us to detect homozygous cases of extended deletions using standard PCR, followed by direct detection of amplified fragments in 8% polyacrylamide gel. Using this method, homozygous cases of large deletions were detected in three patients, accounting for 2.41% (3/124). The identified CNV cases were verified using allele-specific PCR with an assessment of the approximate boundaries of the deleted fragments, to determine which we developed a primer system covering the analyzed chromosomal region. As a result, it was established that in one patient the large deletion covered only a copy of the STRC gene, in another – a copy of two genes STRC and CATSPER2, and in the third patient copies of the CKMT1A gene and the STRCP1 pseudogene were deleted. Taking into account affected individuals carrying causative homozygous deletions in the STRC gene region, the contribution of DFNB16 among GJB2-negative patients in Yakutia is at least 1.6% (2/124). Thus, the optimized method for searching for homozygous large deletions using standard PCR and the developed primer system for assessing the boundaries of the identified CNVs can be used as primary or alternative first-line tests for screening/ verification of large deletions in the STRC locus.
About the Authors
V. G. PshennikovaRussian Federation
Vera G. Pshennikova
6/3 Yaroslavsky st., Yakutsk, 677000
A. M. Cherdonova
Russian Federation
58 Belinsky st., Yakutsk, 677013
T. V. Borisova
Russian Federation
58 Belinsky st., Yakutsk, 677013
F. M. Teryutin
Russian Federation
6/3 Yaroslavsky st., Yakutsk, 677000
N. A. Barashkov
Russian Federation
6/3 Yaroslavsky st., Yakutsk, 677000
S. A. Fedorova
Russian Federation
58 Belinsky st., Yakutsk, 677013
References
1. Han S., Zhang D., Guo Y. et al. Prevalence and Characteristics of STRC Gene Mutations (DFNB16): A Systematic Review and MetaAnalysis. Front Genet. 2021 Sep 21;12:707845. doi: 10.3389/fgene.2021.707845.
2. Sloan-Heggen C.M., Bierer A..O, Shearer A.E. et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet. 2016 Apr;135(4):441-450. doi: 10.1007/s00439016-1648-8.
3. Plevova P., Paprskarova M., Tvrda P. et al. STRC Deletion is a Frequent Cause of Slight to Moderate Congenital Hearing Impairment in the Czech Republic. Otol Neurotol. 2017 Dec;38(10):e393-e400. doi: 10.1097/MAO.0000000000001571.
4. Back D., Shehata-Dieler W., Vona B. et al. Phenotypic Characterization of DFNB16-associated Hearing Loss. Otol Neurotol. 2019 Jan;40(1):e48-e55. doi: 10.1097/MAO.0000000000002059.
5. Čada Z., Šafka Brožková D., Balatková Z. et al. Moderate sensorineural hearing loss is typical for DFNB16 caused by various types of mutations affecting the STRC gene. Eur Arch Otorhinolaryngol. 2019 Dec;276(12):3353-3358. doi: 10.1007/s00405-019-05649-5.
6. Shatokhina O., Galeeva N., Stepanova A., Markova T. et al. Spectrum of Genes for Non-GJB2-Related Non-Syndromic Hearing Loss in the Russian Population Revealed by a Targeted Deafness Gene Panel. Int. J. Mol. Sci. 2022, 23, 15748. https://doi.org/10.3390/ijms232415748
7. Verpy E., Masmoudi S., Zwaenepoel I. et al. Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nature Genet. 2001 29: 345-349.
8. Hildebrand M.S., Avenarius M.R., Smith R.J.H. CATSPER-Related Male Infertility – RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY. 2009 Dec 3 [updated 2017 Mar 23]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2024.
9. Francey L.J., Conlin L.K., Kadesch H.E. et al. Genome-wide SNP genotyping identifies the Stereocilin (STRC) gene as a major contributor to pediatric bilateral sensorineural hearing impairment. Am J Med Genet A. 2012 Feb;158A(2):298-308. doi: 10.1002/ajmg.a.34391.
10. Abbasi W., French C.E., Rockowitz S. et al. Evaluation of copy number variants for genetic hearing loss: a review of current approaches and recent findings. Hum Genet. 2022 Apr;141(3-4):387400. doi: 10.1007/s00439-021-02365-1.
11. Butz M., McDonald A., Lundquist P.A. et al. Development and Validation of a Next-Generation Sequencing Panel for Syndromic and Nonsyndromic Hearing Loss. J Appl Lab Med. 2020 May 1;5(3):467-479. doi: 10.1093/jalm/jfaa021.
12. Gabrielaite M., Torp M.H., Rasmussen M.S. et al. A Comparison of Tools for Copy-Number Variation Detection in Germline Whole Exome and Whole Genome Sequencing Data. Cancers (Basel). 2021 Dec 14;13(24):6283. doi: 10.3390/cancers13246283.
13. Rentas S., Abou Tayoun A. Utility of droplet digital PCR and NGSbased CNV clinical assays in hearing loss diagnostics: current status and future prospects. Expert Rev Mol Diagn. 2021 Feb;21(2):213221. doi: 10.1080/14737159.2021.1887731.
14. Vona B., Hofrichter M.A., Neuner C. et al. DFNB16 is a frequent cause of congenital hearing impairment: implementation of STRC mutation analysis in routine diagnostics. Clin Genet. 2015;87(1):4955. doi: 10.1111/cge.12332.
15. D’haene B., Vandesompele J., Hellemans J. Accurate and objective copy number profiling using real-time quantitative PCR. Methods. 2010 Apr;50(4):262-70. doi: 10.1016/j.ymeth.2009.12.007.
16. Barashkov N.A., Pshennikova V.G., Posukh O.L. et al. Spectrum and Frequency of the GJB2 Gene Pathogenic Variants in a Large Cohort of Patients with Hearing Impairment Living in a Subarctic Region of Russia (the Sakha Republic). PLoS One. 2016 May 25;11(5):e0156300. doi: 10.1371/journal.pone.0156300.
17. Pshennikova V.G., Barashkov N.A., Solovyev A.V. et al. Analysis of GJB6 (Сx30) and GJB3 (Сx31) genes in deaf patients with monoallelic mutations in GJB2 (Сx26) gene in the Sakha Republic (Yakutia). Russ J Genet. 2017; 53: 688–697. Doi: 10.1134/S1022795417030103.
18. Romanov G.P., Barashkov N.A., Teryutin F.M. et al. Marital Structure, Genetic Fitness, and the GJB2 Gene Mutations among Deaf People in Yakutia (Eastern Siberia, Russia). Russ J Genet. 2018; 54: 554–561. Doi:10.1134/S1022795418050071.
19. Marková S.P., Brožková D.Š., Laššuthová P. et al. STRC Gene Mutations, Mainly Large Deletions, are a Very Important Cause of Early-Onset Hereditary Hearing Loss in the Czech Population. Genet Test Mol Biomarkers. 2018 Feb;22(2):127-134. doi: 10.1089/gtmb.2017.0155.
20. Mironovich O.L. Geneticheskaya geterogennost’ nesindromal’noj i imitiruyushchej ee sindromal’noj tugouhosti: special’nost’ 03.02.07 «Genetika»: dissertaciya na soiskanie uchenoj stepeni kandidata medicinskih nauk [Genetic heterogeneity of non-syndromic and syndromic hearing loss imitating it: specialty 03.02.07 “Genetics”: dissertation for the degree of candidate of medical sciences]. 2019:141. (In Russ.)
21. Shearer A.E., Kolbe D.L., Azaiez H. et al. Copy number variants are a common cause of non-syndromic hearing loss. Genome Med. 2014 May 22;6(5):37. doi: 10.1186/gm554.
22. Monani U.R., Lorson C.L., Parsons D.W. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. 1999 Jul;8(7):1177-83. doi: 10.1093/hmg/8.7.1177.
Review
For citations:
Pshennikova V.G., Cherdonova A.M., Borisova T.V., Teryutin F.M., Barashkov N.A., Fedorova S.A. The optimized method for identifying copy number variation (CNV) at the STRC locus. Medical Genetics. 2024;23(7):42-50. (In Russ.) https://doi.org/10.25557/2073-7998.2024.07.42-50