Preview

Медицинская генетика

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Оптимизированный способ идентификации вариаций числа копий (CNV) в локусе STRC

https://doi.org/10.25557/2073-7998.2024.07.42-50

Аннотация

Мутационные изменения гена STRC обуславливают аутосомно-рецессивную форму потери слуха 16 типа (DFNB16), которая в большинстве случаев характеризуется непрогрессирующим течением, легкой или умеренной степенью тяжести. Одной из проблем детекции вариантов гена STRC является наличие высокогомологичного псевдогена STRCP1 (99,6% идентичности). В связи с этим, при ДНК-тестировании гена STRC используют комбинированный подход, поскольку ни один из методов в отдельности не обнаруживает все типы мутаций. В настоящей работе на выборке из 124 GJB2-негативных пациентов с потерей слуха из Якутии был применен оптимизированный способ идентификации вариаций числа копий (CNV) в локусе STRC. Способ позволяет детектировать гомозиготные случаи протяженных делеций методом стандартной ПЦР с последующей прямой детекцией амплифицированных фрагментов в 8% полиакриламидном геле. Этим способом гомозиготные случаи протяженных делеций были обнаружены у трех пациентов, что составило 2,41% (3/124). Выявленные CNV были верифицированы с использованием аллель-специфической ПЦР c оценкой приблизительных границ делетированных фрагментов, для определения которых была разработана специальная система праймеров. В результате установлено, что у одного пациента протяженная делеция охватывала только ген STRC, у другого –  два гена STRC и CATSPER2, а у третьего пациента делетированными оказались  ген CKMT1A и псевдоген STRCP1. С учетом пораженных индивидов, несущих однозначно каузативные протяженные делеции, захватывающие область гена STRC, в гомозиготном состоянии, вклад DFNB16 у GJB2-негативных пациентов в Якутии составил не менее 1,6% (2/124). Таким образом, оптимизированный способ поиска гомозиготных протяженных делеций методом стандартной ПЦР и разработанная система праймеров для оценки границ выявленных CNV могут быть применимы в качестве основных или альтернативных тестов первой линии для скрининга/верификации протяженных делеций в локусе STRC.

Об авторах

В. Г. Пшенникова
ФГБНУ «Якутский научный центр комплексных медицинских проблем»
Россия

Пшенникова Вера Геннадиевна

677000, г. Якутск, ул. Ярославского, д. 6/3



А. М. Чердонова
ФГАОУ ВО «Северо-Восточный федеральный университет им. М.К. Аммосова»
Россия

677013, г. Якутск, ул. Белинского, д. 58



Т. В. Борисова
ФГАОУ ВО «Северо-Восточный федеральный университет им. М.К. Аммосова»
Россия

677013, г. Якутск, ул. Белинского, д. 58



Ф. М. Терютин
ФГБНУ «Якутский научный центр комплексных медицинских проблем»
Россия

677000, г. Якутск, ул. Ярославского, д. 6/3



Н. А. Барашков
ФГБНУ «Якутский научный центр комплексных медицинских проблем»
Россия

677000, г. Якутск, ул. Ярославского, д. 6/3



С. А. Федорова
ФГАОУ ВО «Северо-Восточный федеральный университет им. М.К. Аммосова»
Россия

677013, г. Якутск, ул. Белинского, д. 58



Список литературы

1. Han S., Zhang D., Guo Y. et al. Prevalence and Characteristics of STRC Gene Mutations (DFNB16): A Systematic Review and MetaAnalysis. Front Genet. 2021 Sep 21;12:707845. doi: 10.3389/fgene.2021.707845.

2. Sloan-Heggen C.M., Bierer A..O, Shearer A.E. et al. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet. 2016 Apr;135(4):441-450. doi: 10.1007/s00439016-1648-8.

3. Plevova P., Paprskarova M., Tvrda P. et al. STRC Deletion is a Frequent Cause of Slight to Moderate Congenital Hearing Impairment in the Czech Republic. Otol Neurotol. 2017 Dec;38(10):e393-e400. doi: 10.1097/MAO.0000000000001571.

4. Back D., Shehata-Dieler W., Vona B. et al. Phenotypic Characterization of DFNB16-associated Hearing Loss. Otol Neurotol. 2019 Jan;40(1):e48-e55. doi: 10.1097/MAO.0000000000002059.

5. Čada Z., Šafka Brožková D., Balatková Z. et al. Moderate sensorineural hearing loss is typical for DFNB16 caused by various types of mutations affecting the STRC gene. Eur Arch Otorhinolaryngol. 2019 Dec;276(12):3353-3358. doi: 10.1007/s00405-019-05649-5.

6. Shatokhina O., Galeeva N., Stepanova A., Markova T. et al. Spectrum of Genes for Non-GJB2-Related Non-Syndromic Hearing Loss in the Russian Population Revealed by a Targeted Deafness Gene Panel. Int. J. Mol. Sci. 2022, 23, 15748. https://doi.org/10.3390/ijms232415748

7. Verpy E., Masmoudi S., Zwaenepoel I. et al. Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nature Genet. 2001 29: 345-349.

8. Hildebrand M.S., Avenarius M.R., Smith R.J.H. CATSPER-Related Male Infertility – RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY. 2009 Dec 3 [updated 2017 Mar 23]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2024.

9. Francey L.J., Conlin L.K., Kadesch H.E. et al. Genome-wide SNP genotyping identifies the Stereocilin (STRC) gene as a major contributor to pediatric bilateral sensorineural hearing impairment. Am J Med Genet A. 2012 Feb;158A(2):298-308. doi: 10.1002/ajmg.a.34391.

10. Abbasi W., French C.E., Rockowitz S. et al. Evaluation of copy number variants for genetic hearing loss: a review of current approaches and recent findings. Hum Genet. 2022 Apr;141(3-4):387-400. doi: 10.1007/s00439-021-02365-1.

11. Butz M., McDonald A., Lundquist P.A. et al. Development and Validation of a Next-Generation Sequencing Panel for Syndromic and Nonsyndromic Hearing Loss. J Appl Lab Med. 2020 May 1;5(3):467479. doi: 10.1093/jalm/jfaa021.

12. Gabrielaite M., Torp M.H., Rasmussen M.S. et al. A Comparison of Tools for Copy-Number Variation Detection in Germline Whole Exome and Whole Genome Sequencing Data. Cancers (Basel). 2021 Dec 14;13(24):6283. doi: 10.3390/cancers13246283.

13. Rentas S., Abou Tayoun A. Utility of droplet digital PCR and NGSbased CNV clinical assays in hearing loss diagnostics: current status and future prospects. Expert Rev Mol Diagn. 2021 Feb;21(2):213221. doi: 10.1080/14737159.2021.1887731.

14. Vona B., Hofrichter M.A., Neuner C. et al. DFNB16 is a frequent cause of congenital hearing impairment: implementation of STRC mutation analysis in routine diagnostics. Clin Genet. 2015;87(1):4955. doi: 10.1111/cge.12332.

15. D’haene B., Vandesompele J., Hellemans J. Accurate and objective copy number profiling using real-time quantitative PCR. Methods. 2010 Apr;50(4):262-70. doi: 10.1016/j.ymeth.2009.12.007.

16. Barashkov N.A., Pshennikova V.G., Posukh O.L. et al. Spectrum and Frequency of the GJB2 Gene Pathogenic Variants in a Large Cohort of Patients with Hearing Impairment Living in a Subarctic Region of Russia (the Sakha Republic). PLoS One. 2016 May 25;11(5):e0156300. doi: 10.1371/journal.pone.0156300.

17. Пшенникова В.Г., Барашков Н.А., Соловьев А.В. и др. Поиск мутаций в генах GJB6 (Сх30) и GJB3 (Сх31) у глухих пациентов с моноаллельными мутациями гена GJB2 (Сх26) в Якутии. Генетика. 2017;53(6):705-715. DOI 10.7868/S0016675817030109.

18. Романов Г.П., Барашков Н.А., Терютин Ф.М. и др. Брачная структура, репродуктивные параметры и мутации гена GJB2 (СX26) у глухих людей в Якутии. Генетика. 2018;54(5):547-555. DOI 10.7868/S0016675818050053.

19. Marková S.P., Brožková D.Š., Laššuthová P. et al. STRC Gene Mutations, Mainly Large Deletions, are a Very Important Cause of Early-Onset Hereditary Hearing Loss in the Czech Population. Genet Test Mol Biomarkers. 2018 Feb;22(2):127-134. doi: 10.1089/gtmb.2017.0155.

20. Миронович ОЛ. Генетическая гетерогенность несиндромальной и имитирующей ее синдромальной тугоухости: специальность 03.02.07 «Генетика»: диссертация на соискание ученой степени кандидата медицинских наук. 2019:141.

21. Shearer A.E., Kolbe D.L., Azaiez H. et al. Copy number variants are a common cause of non-syndromic hearing loss. Genome Med. 2014 May 22;6(5):37. doi: 10.1186/gm554.

22. Monani U.R., Lorson C.L., Parsons D.W. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. 1999 Jul;8(7):1177-83. doi: 10.1093/hmg/8.7.1177.


Рецензия

Для цитирования:


Пшенникова В.Г., Чердонова А.М., Борисова Т.В., Терютин Ф.М., Барашков Н.А., Федорова С.А. Оптимизированный способ идентификации вариаций числа копий (CNV) в локусе STRC. Медицинская генетика. 2024;23(7):42-50. https://doi.org/10.25557/2073-7998.2024.07.42-50

For citation:


Pshennikova V.G., Cherdonova A.M., Borisova T.V., Teryutin F.M., Barashkov N.A., Fedorova S.A. The optimized method for identifying copy number variation (CNV) at the STRC locus. Medical Genetics. 2024;23(7):42-50. (In Russ.) https://doi.org/10.25557/2073-7998.2024.07.42-50

Просмотров: 108


ISSN 2073-7998 (Print)