

Features of clonal evolution in acute myeloid leukemia
https://doi.org/10.25557/2073-7998.2024.07.15-23
Abstract
The work highlights the variability of the mutational profile and clonal evolution of AML from diagnosis to relapse, with an emphasis on pediatric AML. The significance of molecular changes associated with age determines therapeutic approaches, which, in turn, influence the processes of relapse. Two main mechanisms of relapse are discussed: progression of the dominant allele of the driver mutation and evolution of clonal composition initiated by chemotherapy regimens. The contribution of epigenetic mechanisms in tumor progression as a way of forming chemoresistance and evolutionarily stable clones is assessed. As well as the role of aberrant methylation as an independent functional mechanism, taking into account the change in the mutational spectrum of a recurrent tumor.
Keywords
About the Authors
V. V. MusatovaRussian Federation
Victoria V. Musatova
1 Moskvorechie st., Moscow, 115522
A. V. Efremova
Russian Federation
1 Moskvorechie st., Moscow, 115522
References
1. Pediatric Acute Myeloid Leukemia (AML): From Genes to Models Toward Targeted Therapeutic Intervention. Mercher T and Schwaller J (2019) Front. Pediatr. 7: 401.doi: 10.3389/fped.2019.00401
2. Li S., Mason C.E., Melnick A. Genetic and epigenetic heterogeneity in acute myeloid leukemia. Curr Opin Genet Dev. 2016;36:100-106. doi:10.1016/j.gde.2016.03.011
3. Stratmann S., Yones S.A., Mayrhofer M., et al. Genomic characterization of relapsed acute myeloid leukemia reveals novel putative therapeutic targets. Blood Adv. 2021;5(3):900-912. doi:10.1182/bloodadvances.2020003709
4. Conneely S.E., Rau R.E. The genomics of acute myeloid leukemia in children. Cancer Metastasis Rev. 2020;39(1):189-209. doi:10.1007/s10555-020-09846-1
5. Aziz H., Ping C.Y., Alias H., Ab Mutalib N.S., Jamal R. Gene Mutations as Emerging Biomarkers and Therapeutic Targets for Relapsed Acute Myeloid Leukemia. Front Pharmacol. 2017;8:897. doi:10.3389/fphar.2017.00897
6. Klein K., van Litsenburg R.R.L., de Haas V., et al. Causes of early death and treatment-related death in newly diagnosed pediatric acute myeloid leukemia: Recent experiences of the Dutch Childhood Oncology Group. Pediatr Blood Cancer. 2020 Apr;67(4):e28099. doi: 10.1002/pbc.28099.
7. Bachas C. et al. The role of minor subpopulations within the leukemic blast compartment of AML patients at initial diagnosis in the development of relapse. Leukemia.2012; 26: 1313–1320. (2012).
8. Farrar J.E., Schuback H.L., Ries R.E., et al. Genomic Profiling of Pediatric Acute Myeloid Leukemia Reveals a Changing Mutational Landscape from Disease Diagnosis to Relapse. Cancer Res. 2016;76(8):2197-2205. doi:10.1158/0008-5472.CAN-15-1015
9. Jones L., McCarthy P., Bond J. Epigenetics of paediatric acute myeloid leukaemia. Br J Haematol. 2020 Jan;188(1):63-76. doi: 10.1111/bjh.16361.
10. Liang D.C., Liu H.C., Yang C.P., et al. Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A. Blood. 2013;121(15):2988-2995. doi:10.1182/blood-2012-06-436782
11. Xu H., Wen Y., Jin R., Chen H. Epigenetic modifications and targeted therapy in pediatric acute myeloid leukemia. Front Pediatr. 2022;10:975819. doi:10.3389/fped.2022.975819
12. Bertuccio S.N., Anselmi L., Masetti R., et al. Exploiting Clonal Evolution to Improve the Diagnosis and Treatment Efficacy Prediction in Pediatric AML. Cancers (Basel). 2021;13(9):1995. doi:10.3390/cancers13091995
13. Zafar N., Ghias K., Fadoo Z. Genetic aberrations involved in relapse of pediatric acute myeloid leukemia: A literature review. Asia Pac J Clin Oncol. 2021;17(5):e135-e141. doi:10.1111/ajco.13367
14. Stratmann S., Yones S.A., Mayrhofer M., et al. Genomic characterization of relapsed acute myeloid leukemia reveals novel putative therapeutic targets. Blood Adv. 2021 Feb 9;5(3):900-912. doi: 10.1182/bloodadvances.2020003709.
15. Masetti R., Castelli I., Astolfi A., et al. Genomic complexity and dynamics of clonal evolution in childhood acute myeloid leukemia studied with whole-exome sequencing. Oncotarget. 2016;7(35):56746-56757. doi:10.18632/oncotarget.10778
16. Garg M. et al. Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse. Blood. 2015; 126: 2491–2501.
17. Bolouri H., Farrar J.E., Triche T.J., et al. Comprehensive characterization of pediatric acute myeloid leukemia reveals novel molecular features and age-specific interactions. bioRxiv. 2017. https://doi.org/10.1101/125609
18. Pollard J.A., Alonzo T.A., Gerbing R., et al. Sorafenib in Combination With Standard Chemotherapy for Children With High Allelic Ratio FLT3/ITD+ Acute Myeloid Leukemia: A Report From the Children’s Oncology Group Protocol AAML1031. J Clin Oncol. 2022 Jun 20;40(18):2023-2035. doi: 10.1200/JCO.21.01612.
19. Ding L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012; 481: 506–510.
20. Tarlock K., Meshinchi S. Pediatric acute myeloid leukemia: biology and therapeutic implications of genomic variants. Pediatr Clin North Am. 2015;62(1):75–93.
21. Bachas C., Schuurhuis G.J., Hollink I.H.I.M., et al. High-frequency type I/II mutational shifts between diagnosis and relapse are associated with outcome in pediatric AML: implications for personalized medicine. Blood. 2010; 116: 2752-2758.
22. Smith C.C., Levis M.J., Perl A.E., Hill J..E, Rosales M., Bahceci E. Molecular profile of FLT3-mutated relapsed/refractory patients with AML in the phase 3 ADMIRAL study of gilteritinib. Blood Adv. 2022 Apr 12;6(7):2144-2155. doi: 10.1182/bloodadvances.2021006489.
23. Sun Y., Chen B.R., Deshpande A. Epigenetic Regulators in the Development, Maintenance, and Therapeutic Targeting of Acute Myeloid Leukemia. Front Oncol. 2018 Feb 23;8:41. doi: 10.3389/fonc.2018.00041.
24. Dawson M.A., Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012; 150:12–27. doi: 10.1016/j.cell.2012.06.013
25. Guryanova O.A., Shank K., Spitzer B., et al. DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat Med. 2016 Dec;22(12):14881495. doi: 10.1038/nm.4210.
26. Montalban-Bravo G., DiNardo C.D. The role of IDH mutations in acute myeloid leukemia. Future Oncol. 2018; 14:979–93. doi: 10.2217/fon-2017-0523
27. Shlush L.I., Zandi S., Mitchell A., et al. Identification of preleukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014; 506(7488): 328-333. doi: 10.1038/nature13038 63.
28. Corces-Zimmerman M.R., Hong W.J., Weissman I.L., Medeiros B.C., Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA. 2014; 111(7): 2548-2553. doi: 10.1073/pnas.1324297111
29. Wiehle L., Raddatz G., Pusch S., et al. mIDH-associated DNA hypermethylation in acute myeloid leukemia reflects differentiation blockage rather than inhibition of TET-mediated demethylation. Cell Stress. 2017 Sep 20;1(1):55-67. doi: 10.15698/cst2017.10.106.
30. Ley T.J., Miller C., Ding L., et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368:2059–74. doi: 10.1056/NEJMoa1301689
31. Fong C.Y., Morison J., Dawson M.A. Epigenetics in the hematologic malignancies. Haematologica. 2014; 99:1772–83. doi: 10.3324/haematol.2013. 092007
32. Nguyen S., Leblanc T., Fenaux P., et al. A white blood cell index 341 as the main prognostic factor in t(8;21) acute myeloid leukemia (AML): a survey of 161 342 cases from the French AML Intergroup. Blood. 2002; 99: 3517–23
33. Zampini M., Tregnago C., Bisio, V. et al. Epigenetic heterogeneity affects the risk of relapse in children with t(8;21)RUNX1-RUNX1T1-rearranged AML. Leukemia. 2018; 32: 1124–1134. https://doi.org/10.1038/s41375-017-0003-y
34. Ichikawa M., Yoshimi A., Nakagawa M., et al. A role for RUNX1 in hematopoiesis and myeloid leukemia. Int. J. Hematol. 2013; 97: 726–734.
35. Sardina J.L., Collombet S., Tian T.V., et al. Transcription Factors Drive Tet2-Mediated Enhancer Demethylation to Reprogram Cell Fate. Cell Stem. Cell. 2018; 23: 905–906.
36. Romanova E.I., Zubritskiy A.V., Lioznova A.V., et al. RUNX1/CEBPA Mutation in Acute Myeloid Leukemia Promotes Hypermethylation and Indicates for Demethylation Therapy. Int J Mol Sci. 2022 Sep 27;23(19):11413. doi: 10.3390/ijms231911413.
37. Alexander T.B., Mullighan C.G. Molecular Biology of Childhood Leukemia. Annual Review of Cancer Biology. 2021; 5(1), 95-117.
38. An J., Ko M. Epigenetic Modification of Cytosines in Hematopoietic Differentiation and Malignant Transformation. Int J Mol Sci. 2023 Jan 15;24(2):1727. doi: 10.3390/ijms24021727.
39. Bhojwani D., Burke M.J., Horton T., et al. Investigating the biology of relapsed acute leukemia: Proceedings of the Therapeutic Advances for Childhood Leukemia & Lymphoma (TACL) Consortium Biology Working Group. Pediatr Hematol Oncol. 2017 Sep-Oct;34(6-7):355-364. doi: 10.1080/08880018.2017.1395937.
40. Shlush L., Mitchell A., Heisler L. et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017; 547: 104–108. https://doi.org/10.1038/nature22993
41. Stieglitz E., Mazor T., Olshen A.B. et al. Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nat Commun. 2017; 8,:2127. https://doi.org/10.1038/s41467-017-02178-9
42. Olk-Batz C., Poetsch A.R., Nöllke P., et al. Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome. Blood. 2011 May 5;117(18):4871-80. doi: 10.1182/blood-2010-08-298968.
43. Makhacheva F.A., Valiev T.T. Lecheniye ostrykh miyeloidnykh leykozov u detey: sovremennyy vzglyad na problemu [Pediatric acute myeloid leukemias treatment: current scientific view]. Onkogematologiya [Oncohematology]. 2020;15(1):10-27. (In Russ.) https://doi.org/10.17650/1818-8346-2020-15-1-10-27
44. Makhacheva F.A., Valiev T.T. Lecheniye retsidivov i refrakternykh form ostrogo miyeloidnogo leykoza u detey [Treatment of pediatric relapsed and refractory acute myeloid leukemia]. Onkogematologiya [Oncohematology]. 2023;18(2):17-24. (In Russ.) https://doi.org/10.17650/1818-8346-2023-18-2-17-24
45. Al-Rawashde F.A., Johan M.F., Taib W.R.W., et al. Thymoquinone Inhibits Growth of Acute Myeloid Leukemia Cells through Reversal SHP-1 and SOCS-3 Hypermethylation: In Vitro and In Silico Evaluation. Pharmaceuticals (Basel). 2021 Dec 9;14(12):1287. doi: 10.3390/ph14121287.
46. Xiao X., Yang J., Li R., et al. Deregulation of mitochondrial ATPsyn-β in acute myeloid leukemia cells and with increased drug resistance. PLoS One. 2013 Dec 31;8(12):e83610. doi: 10.1371/journal.pone.0083610.
47. Reinhardt D., Antoniou E., Waack K. Pediatric Acute Myeloid Leukemia-Past, Present, and Future. J Clin Med. 2022 Jan 19;11(3):504. doi: 10.3390/jcm11030504.
Review
For citations:
Musatova V.V., Efremova A.V. Features of clonal evolution in acute myeloid leukemia. Medical Genetics. 2024;23(7):15-23. (In Russ.) https://doi.org/10.25557/2073-7998.2024.07.15-23