

Особенности клональной эволюции при остром миелоидном лейкозе
https://doi.org/10.25557/2073-7998.2024.07.15-23
Аннотация
Освещена вариабельность мутационного профиля и клональной эволюции острого миелоидного лейкоза (ОМЛ) от момента постановки диагноза до рецидива c акцентом на ОМЛ у детей. Молекулярные изменения, ассоциированные с возрастом, определяют терапевтические подходы, которые, в свою очередь, влияют на процессы рецидивирования. Обсуждается два основных механизма рецидивирования: прогрессия доминантного аллеля драйверной мутации и эволюция клонального состава, инициируемая схемами химиотерапии. Представлена оценка вклада эпигенетических механизмов в прогрессию опухоли как способа формирования химиорезистентности и эволюционно устойчивых клонов, а также роль аберрантного метилирования как самостоятельного функционального механизма с учётом изменения мутационного спектра рецидивирующей опухоли.
Ключевые слова
Об авторах
В. В. МусатоваРоссия
Мусатова Виктория Владимировна
115522, г. Москва, ул. Москворечье, д. 1
А. В. Ефремова
Россия
115522, г. Москва, ул. Москворечье, д. 1
Список литературы
1. Pediatric Acute Myeloid Leukemia (AML): From Genes to Models Toward Targeted Therapeutic Intervention. Mercher T and Schwaller J (2019) Front. Pediatr. 7: 401.doi: 10.3389/fped.2019.00401
2. Li S., Mason C.E., Melnick A. Genetic and epigenetic heterogeneity in acute myeloid leukemia. Curr Opin Genet Dev. 2016;36:100106. doi:10.1016/j.gde.2016.03.011
3. Stratmann S., Yones S.A., Mayrhofer M., et al. Genomic characterization of relapsed acute myeloid leukemia reveals novel putative therapeutic targets. Blood Adv. 2021;5(3):900-912. doi:10.1182/bloodadvances.2020003709
4. Conneely S.E., Rau R.E. The genomics of acute myeloid leukemia in children. Cancer Metastasis Rev. 2020;39(1):189-209. doi:10.1007/s10555-020-09846-1
5. Aziz H., Ping C.Y., Alias H., Ab Mutalib N.S., Jamal R. Gene Mutations as Emerging Biomarkers and Therapeutic Targets for Relapsed Acute Myeloid Leukemia. Front Pharmacol. 2017;8:897. doi:10.3389/fphar.2017.00897
6. Klein K., van Litsenburg R.R.L., de Haas V., et al. Causes of early death and treatment-related death in newly diagnosed pediatric acute myeloid leukemia: Recent experiences of the Dutch Childhood Oncology Group. Pediatr Blood Cancer. 2020 Apr;67(4):e28099. doi: 10.1002/pbc.28099.
7. Bachas C. et al. The role of minor subpopulations within the leukemic blast compartment of AML patients at initial diagnosis in the development of relapse. Leukemia.2012; 26: 1313–1320. (2012).
8. Farrar J.E., Schuback H.L., Ries R.E., et al. Genomic Profiling of Pediatric Acute Myeloid Leukemia Reveals a Changing Mutational Landscape from Disease Diagnosis to Relapse. Cancer Res. 2016;76(8):2197-2205. doi:10.1158/0008-5472.CAN-15-1015
9. Jones L., McCarthy P., Bond J. Epigenetics of paediatric acute myeloid leukaemia. Br J Haematol. 2020 Jan;188(1):63-76. doi: 10.1111/bjh.16361.
10. Liang D.C., Liu H.C., Yang C.P., et al. Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A. Blood. 2013;121(15):2988-2995. doi:10.1182/blood-2012-06-436782
11. Xu H., Wen Y., Jin R., Chen H. Epigenetic modifications and targeted therapy in pediatric acute myeloid leukemia. Front Pediatr. 2022;10:975819. doi:10.3389/fped.2022.975819
12. Bertuccio S.N., Anselmi L., Masetti R., et al. Exploiting Clonal Evolution to Improve the Diagnosis and Treatment Efficacy Prediction in Pediatric AML. Cancers (Basel). 2021;13(9):1995. doi:10.3390/cancers13091995
13. Zafar N., Ghias K., Fadoo Z. Genetic aberrations involved in relapse of pediatric acute myeloid leukemia: A literature review. Asia Pac J Clin Oncol. 2021;17(5):e135-e141. doi:10.1111/ajco.13367
14. Stratmann S., Yones S.A., Mayrhofer M., et al. Genomic characterization of relapsed acute myeloid leukemia reveals novel putative therapeutic targets. Blood Adv. 2021 Feb 9;5(3):900-912. doi: 10.1182/bloodadvances.2020003709.
15. Masetti R., Castelli I., Astolfi A., et al. Genomic complexity and dynamics of clonal evolution in childhood acute myeloid leukemia studied with whole-exome sequencing. Oncotarget. 2016;7(35):56746-56757. doi:10.18632/oncotarget.10778
16. Garg M. et al. Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse. Blood. 2015; 126: 2491–2501.
17. Bolouri H., Farrar J.E., Triche T.J., et al. Comprehensive characterization of pediatric acute myeloid leukemia reveals novel molecular features and age-specific interactions. bioRxiv. 2017. https://doi.org/10.1101/125609
18. Pollard J.A., Alonzo T.A., Gerbing R., et al. Sorafenib in Combination With Standard Chemotherapy for Children With High Allelic Ratio FLT3/ITD+ Acute Myeloid Leukemia: A Report From the Children’s Oncology Group Protocol AAML1031. J Clin Oncol. 2022 Jun 20;40(18):2023-2035. doi: 10.1200/JCO.21.01612.
19. Ding L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012; 481: 506–510.
20. Tarlock K., Meshinchi S. Pediatric acute myeloid leukemia: biology and therapeutic implications of genomic variants. Pediatr Clin North Am. 2015;62(1):75–93.
21. Bachas C., Schuurhuis G.J., Hollink I.H.I.M., et al. High-frequency type I/II mutational shifts between diagnosis and relapse are associated with outcome in pediatric AML: implications for personalized medicine. Blood. 2010; 116: 2752-2758.
22. Smith C.C., Levis M.J., Perl A.E., Hill J..E, Rosales M., Bahceci E. Molecular profile of FLT3-mutated relapsed/refractory patients with AML in the phase 3 ADMIRAL study of gilteritinib. Blood Adv. 2022 Apr 12;6(7):2144-2155. doi: 10.1182/bloodadvances.2021006489.
23. Sun Y., Chen B.R., Deshpande A. Epigenetic Regulators in the Development, Maintenance, and Therapeutic Targeting of Acute Myeloid Leukemia. Front Oncol. 2018 Feb 23;8:41. doi: 10.3389/fonc.2018.00041.
24. Dawson M.A., Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012; 150:12–27. doi: 10.1016/j.cell.2012.06.013
25. Guryanova O.A., Shank K., Spitzer B., et al. DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat Med. 2016 Dec;22(12):14881495. doi: 10.1038/nm.4210.
26. Montalban-Bravo G., DiNardo C.D. The role of IDH mutations in acute myeloid leukemia. Future Oncol. 2018; 14:979–93. doi: 10.2217/fon-2017-0523
27. Shlush L.I., Zandi S., Mitchell A., et al. Identification of preleukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014; 506(7488): 328-333. doi: 10.1038/nature13038 63.
28. Corces-Zimmerman M.R., Hong W.J., Weissman I.L., Medeiros B.C., Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA. 2014; 111(7): 2548-2553. doi: 10.1073/pnas.1324297111
29. Wiehle L., Raddatz G., Pusch S., et al. mIDH-associated DNA hypermethylation in acute myeloid leukemia reflects differentiation blockage rather than inhibition of TET-mediated demethylation. Cell Stress. 2017 Sep 20;1(1):55-67. doi: 10.15698/cst2017.10.106.
30. Ley T.J., Miller C., Ding L., et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013; 368:2059–74. doi: 10.1056/NEJMoa1301689
31. Fong C.Y., Morison J., Dawson M.A. Epigenetics in the hematologic malignancies. Haematologica. 2014; 99:1772–83. doi: 10.3324/haematol.2013. 092007
32. Nguyen S., Leblanc T., Fenaux P., et al. A white blood cell index 341 as the main prognostic factor in t(8;21) acute myeloid leukemia (AML): a survey of 161 342 cases from the French AML Intergroup. Blood. 2002; 99: 3517–23
33. Zampini M., Tregnago C., Bisio, V. et al. Epigenetic heterogeneity affects the risk of relapse in children with t(8;21) RUNX1-RUNX1T1-rearranged AML. Leukemia. 2018; 32: 1124–1134. https://doi.org/10.1038/s41375-017-0003-y
34. Ichikawa M., Yoshimi A., Nakagawa M., et al. A role for RUNX1 in hematopoiesis and myeloid leukemia. Int. J. Hematol. 2013; 97: 726–734.
35. Sardina J.L., Collombet S., Tian T.V., et al. Transcription Factors Drive Tet2-Mediated Enhancer Demethylation to Reprogram Cell Fate. Cell Stem. Cell. 2018; 23: 905–906.
36. Romanova E.I., Zubritskiy A.V., Lioznova A.V., et al. RUNX1/CEBPA Mutation in Acute Myeloid Leukemia Promotes Hypermethylation and Indicates for Demethylation Therapy. Int J Mol Sci. 2022 Sep 27;23(19):11413. doi: 10.3390/ijms231911413.
37. Alexander T.B., Mullighan C.G. Molecular Biology of Childhood Leukemia. Annual Review of Cancer Biology. 2021; 5(1), 95-117.
38. An J., Ko M. Epigenetic Modification of Cytosines in Hematopoietic Differentiation and Malignant Transformation. Int J Mol Sci. 2023 Jan 15;24(2):1727. doi: 10.3390/ijms24021727.
39. Bhojwani D., Burke M.J., Horton T., et al. Investigating the biology of relapsed acute leukemia: Proceedings of the Therapeutic Advances for Childhood Leukemia & Lymphoma (TACL) Consortium Biology Working Group. Pediatr Hematol Oncol. 2017 SepOct;34(6-7):355-364. doi: 10.1080/08880018.2017.1395937.
40. Shlush L., Mitchell A., Heisler L. et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017; 547: 104– 108. https://doi.org/10.1038/nature22993
41. Stieglitz E., Mazor T., Olshen A.B. et al. Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nat Commun. 2017; 8,:2127. https://doi.org/10.1038/s41467017-02178-9
42. Olk-Batz C., Poetsch A.R., Nöllke P., et al. Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome. Blood. 2011 May 5;117(18):4871-80. doi: 10.1182/blood-2010-08-298968.
43. Махачева Ф.А., Валиев Т.Т. Лечение острых миелоидных лейкозов у детей: современный взгляд на проблему. Онкогематология. 2020;15(1):10-27. https://doi.org/10.17650/1818-8346-2020-15-1-10-27
44. Махачева Ф.А., Валиев Т.Т. Лечение рецидивов и рефрактерных форм острого миелоидного лейкоза у детей. Онкогематология. 2023;18(2):17-24. https://doi.org/10.17650/1818-8346-2023-18-2-17-24
45. Al-Rawashde F.A., Johan M.F., Taib W.R.W., et al. Thymoquinone Inhibits Growth of Acute Myeloid Leukemia Cells through Reversal SHP-1 and SOCS-3 Hypermethylation: In Vitro and In Silico Evaluation. Pharmaceuticals (Basel). 2021 Dec 9;14(12):1287. doi: 10.3390/ph14121287.
46. Xiao X., Yang J., Li R., et al. Deregulation of mitochondrial ATPsyn-β in acute myeloid leukemia cells and with increased drug resistance. PLoS One. 2013 Dec 31;8(12):e83610. doi: 10.1371/journal.pone.0083610.
47. Reinhardt D., Antoniou E., Waack K. Pediatric Acute Myeloid Leukemia-Past, Present, and Future. J Clin Med. 2022 Jan 19;11(3):504. doi: 10.3390/jcm11030504.
Рецензия
Для цитирования:
Мусатова В.В., Ефремова А.В. Особенности клональной эволюции при остром миелоидном лейкозе. Медицинская генетика. 2024;23(7):15-23. https://doi.org/10.25557/2073-7998.2024.07.15-23
For citation:
Musatova V.V., Efremova A.V. Features of clonal evolution in acute myeloid leukemia. Medical Genetics. 2024;23(7):15-23. (In Russ.) https://doi.org/10.25557/2073-7998.2024.07.15-23