

Hereditary prostate cancer
https://doi.org/10.25557/2073-7998.2024.07.3-14
Abstract
Prostate cancer (PCa) is one of the most common oncological diseases in men. Some cases of PCa can be considered as clinical manifestations of hereditary cancer syndromes – diseases caused by germline mutations and characterized by an increased risk of developing certain types of tumors. The risk of PCa is increased in individuals with germline mutations in the BRCA1/2 genes and other homologous recombination repair genes (HRR), Lynch syndrome, Li-Fraumeni syndrome and a number of other hereditary diseases. We have described clinical and genetic characteristics, diagnostic methods, management and genetic counseling of patients with hereditary forms of PCa, as well as indications for targeted therapy. This review is aimed at clinical and laboratory geneticists, oncologists and related specialists.
Keywords
About the Authors
D. S. MikhaylenkoRussian Federation
Dmitry S. Mikhaylenko
1 Moskvorechie st., Moscow, 115522
8/2 Trubetskaya st., Moscow, 119048
D. V. Zaletayev
Russian Federation
1 Moskvorechie st., Moscow, 115522
References
1. Sostoyaniye onkologicheskoy pomoshchi naseleniyu Rossii v 2022 godu. Pod red. A.D. Kaprina, V.V. Starinskogo, A.O. Shakhzadovoy [The cancer care in Russia in 2022. Ed. by Kaprin A.D., Starinskiy V.V., Shahzadova A.O.] M.: PA Hertzen Moscow Research Oncological Institute branch of the NMRC of radiology at Ministry of Health of Russian Federation, 2022. 239 pp. (In Russ.)
2. Shikeeva AA, Isaeva NI, Vasilyeva EN, et al. Nasledstvennyye onkologicheskiye sindromy: klinicheskiye i geneticheskiye aspekty, diagnostika [Hereditary tumor syndromes: clinical and genetic aspects, diagnostics]. M.: Layvbuk [M.: Livebook], 2022. 108 pp. (In Russ.)
3. Сheng H.H., Sokolova A.O., Gulati R., et al. Internet-based germline genetic testing for men with metastatic prostate cancer. JCO Precis Oncol. 2023;7:e2200104. doi:10.1200/PO.22.00104.
4. Vlaming M., Ausems M.G.E.M., Schijven G., et al. Men with metastatic prostate cancer carrying a pathogenic germline variant in breast cancer genes: disclosure of genetic test results to relatives. Fam Cancer. 2024;23(2):165-175. doi: 10.1007/s10689-024-00377-0.
5. Pritchard C.C., Mateo J., Walsh M.F., et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016;375(5):443-53. doi: 10.1056/NEJMoa1603144.
6. ilarski R. The role of BRCA testing in hereditary pancreatic and prostate cancer families. Am Soc Clin Oncol Educ Book. 2019;39:79-86. doi: 10.1200/EDBK_238977.
7. Beebe-Dimmer J.L., Kapron A.L., Fraser A.M., et al. Risk of prostate cancer associated with familial and hereditary cancer syndromes. J Clin Oncol. 2020;38(16):1807-1813. doi: 10.1200/JCO.19.02808.
8. D’Elia G., Caliendo G., Tzioni M.M., et al. Increased risk of hereditary prostate cancer in Italian families with hereditary breast and ovarian cancer syndrome harboring mutations in BRCA and in other susceptibility genes. Genes (Basel). 2022;13(10):1692. doi: 10.3390/genes13101692.
9. Ni Raghallaigh H., Eeles R. Genetic predisposition to prostate cancer: an update. Fam Cancer. 2022;21(1):101-114. doi: 10.1007/s10689021-00227-3.
10. Olmos D., Lorente D., Alameda D., et al. Treatment patterns and outcomes in metastatic castration-resistant prostate cancer patients with and without somatic or germline alterations in homologous recombination repair genes. Ann Oncol. 2024;35(5):458-472. doi: 10.1016/j.annonc.2024.01.011.
11. Yang X., Leslie G., Doroszuk A., et al. Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families. J Clin Oncol. 2020;38(7):674-685. doi: 10.1200/JCO.19.01907.
12. Wokołorczyk D., Kluźniak W., Stempa K., et al. PALB2 mutations and prostate cancer risk and survival. Br J Cancer. 2021;125(4):569575. doi: 10.1038/s41416-021-01410-0.
13. Stempa K., Wokołorczyk D., Kluźniak W., et al. Do BARD1 mutations confer an elevated risk of prostate cancer? Cancers (Basel). 2021;13(21):5464. doi: 10.3390/cancers13215464.
14. Vietri M.T., D’Elia G., Caliendo G., et al. Hereditary prostate cancer: genes related, target therapy and prevention. Int J Mol Sci. 2021;22(7):3753. doi: 10.3390/ijms22073753.
15. Shegay P.V., Shatalov P.A., Shinkarkina A.P. et al. Ed. by Kaprin A.D. Molekulyarno-geneticheskiye issledovaniya v onkologii. Uchebno-metodicheskoye posobiye [Molecular genetic tests in oncology]. Obninsk: 2023. National Medical Research Center of Radiology, Ministry of Health. 82 pp. (In Russ.).
16. Brandao A., Paulo P., Maia S., et al. The CHEK2 variant c.349A>G is associated with prostate cancer risk and carriers share a common ancestor. Cancers (Basel). 2020;12(11):3254. doi: 10.3390/cancers12113254.
17. Richards S., Aziz N., Bale S., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):40524. doi: 10.1038/gim.2015.30.
18. Ryzhkova O.P., Kardymon O.L., Prohorchuk E.B., et al. Rukovodstvo po interpretatsii dannykh posledovatel’nosti DNK cheloveka, poluchennykh metodami massovogo parallel’nogo sekvenirovaniya (MPS) (redaktsiya 2018, versiya 2) [Guidelines for the interpretation of massive parallel sequencing variants (update 2018, v2)]. Meditsinskaya genetika [Medical Genetics]. 2019;18(2):3-23. (In Russ.) https://doi.org/10.25557/2073-7998.2019.02.3-23
19. Garrett A., Durkie M., Callaway A., et al. Combining evidence for and against pathogenicity for variants in cancer susceptibility genes: CanVIG-UK consensus recommendations. J Med Genet. 2021;58(5):297304. doi: 10.1136/jmedgenet-2020-107248.
20. CanVIG-UK specific recommendations on individual genes involved in carcinogenesis [https://www.cangene-canvaruk.org/gene-specific-recommendations] (accessed 09.06.2024)
21. Hanson H., Astiazaran-Symonds E., Amendola L.M., et al. Management of individuals with germline pathogenic/likely pathogenic variants in CHEK2: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2023;25(10):100870. doi: 10.1016/j.gim.2023.100870.
22. Bhattacharya P., McHugh T.W. Lynch Syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023 Jan.
23. Tsukanov A.S., Kashnikov V.N., Pikunov D.Y., Chernyshov S.V. Sindrom Lincha. Diagnostika, monitoring i lecheniye. Uchebno-metodicheskoye posobiye [Lynch syndrome: diagnostics, management and treatment]. Moscow: Borges Publishing. 2021. 40 pp. (In Russ.).
24. Tsukanov A.S., Demidova I.A., Tsaur G.A. et al. Diagnostika sindroma Lincha u onkologicheskikh patsiyentov: pozitsiya Mezhregional’noy organizatsii molekulyarnykh genetikov v onkologii i onkogematologii [Diagnosis of Lynch syndrome in cancer patients: the position of the Interregional Organization of Molecular Geneticists in Oncology and Oncohematology]. Voprosy Onkologii [Issues of oncology]. 2023;69(1):7-14. doi: 10.37469/0507-3758-2023-69-1-7-14. (In Russ.).
25. Pritzlaff M., Tian Y., Reineke P., et al. Diagnosing hereditary cancer predisposition in men with prostate cancer. Genet Med. 2020;22(9):1517-1523. doi: 10.1038/s41436-020-0830-5.
26. Amadou A., Achatz M.I.W., Hainaut P. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li-Fraumeni syndrome. Curr Opin Oncol. 2018;30(1):23-29. doi: 10.1097/CCO.0000000000000423.
27. Maxwell K.N., Cheng H.H., Powers J., et al. Inherited TP53 variants and risk of prostate cancer. Eur Urol. 2022;81(3):243-250. doi: 10.1016/j.eururo.2021.10.036.
28. Heise M., Jarzemski P., Bąk A., et al. G84E germline mutation in HOXB13 gene is associated with increased prostate cancer risk in Polish men. Pol J Pathol. 2019;70(2):127-133. doi: 10.5114/pjp.2019.87103.
29. Schaid D.J., McDonnell S.K., FitzGerald L.M., et al. Two-stage study of familial prostate cancer by whole-exome sequencing and custom capture identifies 10 novel genes associated with the risk of prostate cancer. Eur Urol. 2021;79(3):353-361. doi: 10.1016/j.eururo.2020.07.038.
30. Wokolorczyk D., Kluzniak W., Huzarski T., et al. Mutations in ATM, NBN and BRCA2 predispose to aggressive prostate cancer in Poland. Int J Cancer. 2020;147(10):2793-2800. doi: 10.1002/ijc.33272.
31. Dupont W.D., Breyer J.P., Johnson S.H., et al. Prostate cancer risk variants of the HOXB genetic locus. Sci Rep. 2021;11(1):11385. doi: 10.1038/s41598-021-89399-7.
32. Dupont W.D., Breyer J.P., Plummer W.D., et al. 8q24 genetic variation and comprehensive haplotypes altering familial risk of prostate cancer. Nat Commun. 2020 ;11(1):1523. doi: 10.1038/s41467-02015122-1.
33. NCCN Guidelines. v.4.2024 Prostate Cancer. [https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf] (accessed 05.06.2024).
34. NCCN Guidelines. v.3.2024 Genetic / Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic. [https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf] (accessed 05.06.2024).
35. NCCN Guidelines. v.2.2023 Genetic / Familial High-Risk Assessment: Colorectal. [https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf] (accessed 05.06.2024).
36. Makarova M.V., Nemtsova M.V., Chernevsky D.K. et al. Mediko-geneticheskoye konsul’tirovaniye patsiyentov s vyyavlennymi klinicheski znachimymi geneticheskimi variantami, assotsiirovannymi s nasledstvennymi opukholevymi sindromami, i ikh rodstvennikov. Uchebno-metodicheskoye posobiye [Medical genetic counseling of patients with identified clinically significant genetic variants associated with hereditary tumor syndromes and their relatives]. M.: 2023. Triumph Publishing House. 71 pp. (In Russ.).
37. Khatkov I.E., Zhukova L.G., Danishevich A.M. et al. Rekomendatsii po meditsinskomu soprovozhdeniyu patsiyentov s verifitsirovannymi (podtverzhdennymi) nasledstvennymi opukholevymi sindromami i ikh rodstvennikov s vyyavlennoy predraspolozhennost’yu k razvitiyu onkologicheskikh zabolevaniy [Recommendations for medical counseling of patients with verified (confirmed) hereditary tumor syndromes and their relatives with an identified predisposition to the development of cancer]. M.: 2022. SBOM A.S. Loginova MCSC DMM, 27 pp. (In Russ.).
38. Gan S., Guo Z., Zou Q., et al. Diagnosis accuracy of PCA3 level in patients with prostate cancer: a systematic review with meta-analysis. Int Braz J Urol. 2020;46(5):786-793. doi: 10.1590/S1677-5538.IBJU.2019.0521.
39. Barber N., Ali A., editors. Urologic Cancers. Chapter 15: The role of family history and germline genetics in prostate cancer disease profile and screening (199-214 pp.). Brisbane (AU): Exon Publications; 2022. ISBN: 978-0-6453320-5-6.
40. Mikhaylenko D.S. Molekulyarnaya genetika raka predstatel’noy zhelezy. V Rak prostaty: ot proteomiki i genomiki k khirurgii. Pod red. Kogan M.I. i Pushkar’ D.YU. [Molecular genetics of prostate cancer. In Prostate cancer: from proteomics and genomics to surgery. Ed. by Kogan M.I., Pushkar D.Y.]. Rostov-on-Don; South Science Center of RAS Publishing, 2017. 288 pp. (In Russ.)
41. Horak P., Weischenfeldt J., von Amsberg G., et al. Response to olaparib in a PALB2 germline mutated prostate cancer and genetic events associated with resistance. Cold Spring Harb Mol Case Stud. 2019;5(2):a003657. doi: 10.1101/mcs.a003657. PMID: 30833416.
42. Dillon KM, Bekele RT, Sztupinszki Z, et al. PALB2 or BARD1 loss confers homologous recombination deficiency and PARP inhibitor sensitivity in prostate cancer. NPJ Precis Oncol. 2022;6(1):49. doi: 10.1038/s41698-022-00291-7.
43. Militaru F.C., Militaru V., Crisan N., et al. Molecular basis and therapeutic targets in prostate cancer: A comprehensive review. Biomol Biomed. 2023;23(5):760-771. doi: 10.17305/bb.2023.8782.
44. Carreira S., Porta N., Arce-Gallego S., et al. Biomarkers associating with PARP inhibitor benefit in prostate cancer in the TOPARP-B trial. Cancer Discov. 2021;11(11):2812-2827. doi: 10.1158/2159-8290. CD-21-0007.
45. Clinical Guidelines of the Russian Ministry of Health. Prostate cancer. ID:12. https://roou.ru/clinical-guidelines-rpj2021 (accessed 05.06.2024). (In Russ.)].
46. Bugoye F.C., Torrorey-Sawe R., Biegon R., et al. Mutational spectrum of DNA damage and mismatch repair genes in prostate cancer. Front Genet. 2023;14:1231536. doi: 10.3389/fgene.2023.1231536.
47. Hougen H.Y., Graf R.P., Li G., et al. Clinical and genomic factors associated with greater tumor mutational burden in prostate cancer. Eur Urol Open Sci. 2023;55:45-49. doi: 10.1016/j.euros.2023.08.001.
48. Truong H., Breen K., Nandakumar S., et al. Gene-based confirmatory germline testing following tumor-only sequencing of prostate cancer. Eur Urol. 2023;83(1):29-38. doi: 10.1016/j.eururo.2022.08.028.
49. Zhu J., Tucker M., Marin D., et al. Clinical utility of FoundationOne tissue molecular profiling in men with metastatic prostate cancer. Urol Oncol. 2019;37(11):813.e1-813.e9. doi: 10.1016/j.urolonc.2019.06.015.
50. Zurita A.J., Graf R.P., Villacampa G., et al. Genomic biomarkers and genome-wide loss-of-heterozygosity scores in metastatic prostate cancer following progression on androgen-targeting therapies. JCO Precis Oncol. 2022;6:e2200195. doi: 10.1200/PO.22.00195.
Review
For citations:
Mikhaylenko D.S., Zaletayev D.V. Hereditary prostate cancer. Medical Genetics. 2024;23(7):3-14. (In Russ.) https://doi.org/10.25557/2073-7998.2024.07.3-14