Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

SYNPO2L  gene rare variants in the development of early myocardial infarction

https://doi.org/10.25557/2073-7998.2024.06.20-28

Abstract

Myocardial infarction (MI), being the main complication of coronary heart disease (CHD), is one of the most common causes of death and disability in the adult population. Currently, there is an increase in the incidence of MI at a young age. An independent risk factor for MI at a young age is hereditary predisposition. In this work, we searched for rare genetic variants associated with the development of cardiovascular diseases using whole-exome sequencing in patients who had suffered an MI before the age of 45 years, and for whom the main genetic risk factors for MI − monogenic dyslipidemias and thrombophilia – were excluded. In two patients, rare variants of the SYNPO2L gene were identified − p.(Arg630Leu) (rs143723429) and a previously undescribed variant p.(Arg910Gln), leading to amino acid substitutions that can lead to dysfunction of the corresponding protein. The data obtained suggest the involvement of the SYNPO2L gene, encoding a protein of contractile muscle function, in the pathogenesis of early MI.

About the Authors

V. V. Miroshnikova
Pavlov First Saint-Petersburg State Medical University
Russian Federation

6/8, Lev Tolstoy st., Saint-Petersburg, 197022



K. V. Dracheva
Pavlov First Saint-Petersburg State Medical University; Surgut State University
Russian Federation

6/8, Lev Tolstoy st., Saint-Petersburg, 197022

1, Lenin Avenue, Surgut, 628412



L. G. Danilov
Surgut State University; Saint-Petersburg State University
Russian Federation

1, Lenin Avenue, Surgut, 628412

7/9, Universitetskaya naberezhnaya, Saint-Petersburg, 199034



M. Yu. Donnikov
Surgut State University
Russian Federation

1, Lenin Avenue, Surgut, 628412



A. S. Vorobev
Surgut State University
Russian Federation

1, Lenin Avenue, Surgut, 628412



A. V. Morozkina
Surgut State University
Russian Federation

1, Lenin Avenue, Surgut, 628412



A. D. Izumchenko
Pavlov First Saint-Petersburg State Medical University
Russian Federation

6/8, Lev Tolstoy st., Saint-Petersburg, 197022



A. V. Kusakin
Surgut State University; Children’s Scientific and Clinical Center for Infectious Diseases of the Federal Medical and Biological Agency
Russian Federation

1, Lenin Avenue, Surgut, 628412

9, Prof. Popova st., Saint Petersburg, 197022



Yu. А. Eismont
Children’s Scientific and Clinical Center for Infectious Diseases of the Federal Medical and Biological Agency; «Cerbalab» Ltd
Russian Federation

9, Prof. Popova st., Saint Petersburg, 197022

90-2 Bolshoy prospekt, Saint-Petersburg, 199106, St. Petersburg



L. V. Kovalenko
Surgut State University
Russian Federation

1, Lenin Avenue, Surgut, 628412



I. A. Urvantseva
Surgut State University; The Khanty-Mansi Autonomous Okrug – Yugra Diagnostics and Cardiovascular Surgery Center (cardiology clinic)
Russian Federation

1, Lenin Avenue, Surgut, 628412

69/1, Lenin Avenue, Surgut, 628400



O. S. Glotov
Children’s Scientific and Clinical Center for Infectious Diseases of the Federal Medical and Biological Agency; Research Institute of Obstetrics and Gynecology named after D.O. Ott
Russian Federation

9, Prof. Popova st., Saint Petersburg, 197022

3, Mendeleevskaya line, Saint Petersburg, 199034



S. N. Pchelina
Pavlov First Saint-Petersburg State Medical University
Russian Federation

6/8, Lev Tolstoy st., Saint-Petersburg, 197022



References

1. Шальнова С.А., Драпкина О.М., Куценко В.А. и др. Инфаркт миокарда в популяции некоторых регионов России и его прогностическое значение. Российский кардиологический журнал. 2022;27(6):4952. doi:10.15829/15604071-2022-4952. EDN OCPROJ

2. Dai X., Wiernek S., Evans J. P., Runge, M. S. Genetics of coronary artery disease and myocardial infarction. World journal of cardiology. 2016;8(1),1-23. doi: 10.4330/wjc.v8.i1.1

3. Holmen O.L., Zhang H., Zhou W., et al. No large-effect low-frequency coding variation found for myocardial infarction. Human molecular genetics. 2014;23(17), 4721-4728. doi: 10.1093/hmg/ddu175

4. The CARDIoGRAMplusC4D Consortium., Deloukas, P., Kanoni, S. et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1), 25–33. https://doi.org/10.1038/ng.2480

5. Do R., Stitziel N., Won H.H. et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518(7537), 102–106. https://doi.org/10.1038/nature13917

6. Jeon Y., Jeon S., Choi W.H., et al. Genome-wide analyses of earlyonset acute myocardial infarction identify 29 novel loci by whole genome sequencing. Human Genetics. 2023;142(2), 231-243. https://doi.org/10.1007/s00439-022-02495-0

7. Badescu M.C., Butnariu L.I., Costache A.D., et al. Acute Myocardial Infarction in Patients with Hereditary Thrombophilia—A Focus on Factor V Leiden and Prothrombin G20210A. Life. 2023;13(6), 1371. doi: 10.3390/life13061371

8. Отева Э.А., Николаева А.А., Масленников А.Б. и др. Особенности липидно-гормональных взаимосвязей у молодых мужчин, перенесших инфаркт миокарда (по материалам семейных регистров в Новосибирске и Бишкеке). Терапевтический архив. 1994;66(9), 38-41.

9. Brænne I., Reiz B., Medack A. et al. Whole-exome sequencing in an extended family with myocardial infarction unmasks familial hypercholesterolemia. BMC Cardiovasc Disord. 2014;14, 108. https://doi. org/10.1186/1471-2261-14-108

10. Lee C., Cui Y., Song J., et al. Effects of familial hypercholesterolemia-associated genes on the phenotype of premature myocardial infarction. Lipids Health Dis. 2019;18;1-8, 95. https://doi.org/10.1186/ s12944-019-1042-3

11. Khattab M.N., Abbas A., Alhalabi N., Nouh G. Myocardial Infarction with ST Segment Elevation in 19-Year-Old Adult with Multiple Genetic Mutations: A Case Report. 2023;5(1):1044.

12. Cui Y., Li S., Zhang F., et al. Prevalence of familial hypercholesterolemia in patients with premature myocardial infarction. Clinical Cardiology, 2019;42(3), 385-390. https://doi.org/10.1002/clc.23154

13. Brænne I., Kleinecke M., Reiz B. et al. Systematic analysis of variants related to familial hypercholesterolemia in families with premature myocardial infarction. Eur J Hum Genet. 2016;24(2),191–197. https://doi.org/10.1038/ejhg.2015.100

14. Khera A.V., Chaffin M., Zekavat S.M., et al. Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction. Circulation 2019;139(13),1593-1602. https://doi.org/10.1161/CIRCULATIONAHA.118.035658

15. Ghorbani M.J., Razmi N., Tabei S.M. et al. A substitution mutation in LRP8 gene is significantly associated with susceptibility to familial myocardial infarction. ARYA atherosclerosis. 2020;16(6), 301. https://doi.org/10.22122/arya.v16i6.1797

16. Shen G.Q., Girelli D., Li L., et al. A novel molecular diagnostic marker for familial and early-onset coronary artery disease and myocardial infarction in the LRP8 gene. Circ Cardiovasc Genet 2014;7(4):514-20 https://doi.org/10.1161/CIRCGENETICS.113.000321

17. Lee J.Y., Moon S., Kim Y.K., et al. Genome-based exome sequencing analysis identifies GYG1, DIS3L and DDRGK1 are associated with myocardial infarction in Koreans. Journal of Genetics. 2017;96(6), 1041–1046. doi:10.1007/s12041-017-0854-z

18. Мирошникова В.В., Пчелина С.Н., Донников М.Ю. и др. Генетическое тестирование в кардиологии с помощью NGS панели: от оценки риска заболевания до фармакогенетики. Фармакогенетика и фармакогеномика. 2023;(1):7–19. https://doi. org/10.37489/2588-0527-2023-1-7-19

19. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England). 2014;30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/ btu170

20. Li H., Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009; 25(14), 1754–1760 https://doi.org/10.1093/bioinformatics/btp324

21. Poplin R., Chang P.C., Alexander D., et al. A universal SNP and small-indel variant caller using deep neural networks. Nature Biotechnology. 2018;36(10),983–987. doi: https://doi.org/10.1038/ nbt.4235

22. McLaren W., Gil L., Hunt S.E., et al. The Ensembl Variant Effect Predictor. Genome Biology. 2016;17(1):122. doi:10.1186/s13059-016-0974-4

23. Barbitoff Y.A., Khmelkova D.N., Pomerantseva E.A., et al. Expanding the Russian allele frequency reference via cross-laboratory data integration: insights from 6,096 exome samples. MedRXiv, 2021;2021-11. doi: https://doi.org/10.1101/2021.11.02.21265801

24. Van Eldik W., Beqqali A., Monshouwer-Kloots J., Mummery C., Passier, R. Cytoskeletal heart-enriched actin-associated protein (CHAP) is expressed in striated and smooth muscle cells in chick and mouse during embryonic and adult stages. International Journal of Developmental Biology/ 2011;55(6). DOI: 10.1387/ ijdb.103207wv

25. Beqqali A., Monshouwer-Kloots J., Monteiro R., et al. CHAP is a newly identified Z-disc protein essential for heart and skeletal muscle function. J Cell Sci. 2010;123:1141–50. doi: 10.1242/jcs.063859

26. Van Eldik W., Den Adel B., Monshouwer-Kloots J., et al. Z-disc protein CHAPb induces cardiomyopathy and contractile dysfunction in the postnatal heart. PLoS One. 2017;12(12), e0189139. https:// doi.org/10.1371/journal.pone.0189139

27. Lohanadan K., Molt S., Dierck F., et al. Isoform-specific functions of synaptopodin-2 variants in cytoskeleton stabilization and autophagy regulation in muscle under mechanical stress. Experimental Cell Research. 2021;408(2), 112865. https://doi. org/10.1016/j.yexcr.2021.112865

28. Williams Z.J., Velez-Irizarry D., Gardner K., Valberg S. J. Integrated proteomic and transcriptomic profiling identifies aberrant gene and protein expression in the sarcomere, mitochondrial complex I, and the extracellular matrix in Warmblood horses with myofibrillar myopathy. BMC genomics. 2021;22, 1-20. https://doi.org/10.1186/s12864-021-07758-0

29. Banerjee A., Dashtban A., Chen S., et al. Identifying subtypes of heart failure from three electronic health record sources with machine learning: an external, prognostic, and genetic validation study. The Lancet Digital Health. 2023;5(6), e370-e379. DOI: https://doi. org/10.1016/S2589-7500(23)00065-1

30. Nielsen J.B., Fritsche L.G., Zhou W., et al. Genome-wide study of atrial fibrillation identifies seven risk loci and highlights biological pathways and regulatory elements involved in cardiac development. The American Journal of Human Genetics. 2018;102(1), 103-115. https://doi.org/10.1016/j.ajhg.2017.12.003

31. Roberts J.D., Hu D., Heckbert S.R., et al. Genetic investigation into the differential risk of atrial fibrillation among black and white individuals. JAMA cardiology. 2016;1(4), 442-450. doi:10.1001/ jamacardio.2016.1185

32. Ellinor P.T, Lunetta K.L, Albert C.M., et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet. 2012;44(6): 670–675. https://doi.org/10.1038/ng.2261

33. Christophersen I.E., Rienstra M., Roselli C., et al. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat. Genet. 2017;49(6), 946–952 (2017). https://doi.org/10.1038/ng.3843

34. Hsu J., Gore-Panter S., Tchou G., et al.. Genetic control of left atrial gene expression yields insights into the genetic susceptibility for atrial fibrillation. Circulation: Genomic and Precision Medicine. 2018;11(3), e002107. https://doi.org/10.1161/CIRCGEN.118.002107

35. Roselli C., Chaffin M.D., Weng L.C., et al.. Multi-ethnic genomewide association study for atrial fibrillation. Nature Genetics. 2018;50(9),1225-1233. https://doi.org/10.1038/s41588-018-0133-9

36. Lin H., Yin X., Xie Z., et al. Methylome-wide Association Study of Atrial Fibrillation in Framingham Heart Study. Scientific Reports. 2017;7 (1):40377. doi:10.1038/srep40377. http://dx.doi.org/10.1038/srep40377.

37. Patel K.K., Venkatesan C., Abdelhalim H. et al. Genomic approaches to identify and investigate genes associated with atrial fibrillation and heart failure susceptibility. Hum Genomics; 2023;17,47. https://doi. org/10.1186/s40246-023-00498-0

38. Shah S., Henry A., Roselli C., et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure Nature Communications. 2020;11(1), 163. https://doi.org/10.1038/s41467-019-13690-5

39. Shishkova K.Y., Nikulina S.Y., Shulman V.A., et al. The role of single-nucleotide polymorphism rs10824026 of the SYNPO2L gene in the development of atrial fibrillation in a study in the East-Siberian population. CardioSomatics. 2019;10(4).34-38. DOI:10.26442/222 17185.2019.4.190722

40. Thériault S., Imboden M., Biggs M. L., et al. Genome-wide analyses identify SCN5A as a susceptibility locus for premature atrial contraction frequency. Iscience. 2022;25(10). https://doi. org/10.1016/j.isci.2022.105210

41. Lubitz S.A, Brody J.A, Bihlmeyer N.A, et al. Whole Exome Sequencing in Atrial Fibrillation. PLo S genetics. 2016;12(9):e1006284. https://doi.org/10.1371/journal.pgen.1006284

42. Schmidt A.F., Bourfiss M., Alasiri A., et al. Druggable proteins influencing cardiac structure and function: Implications for heart failure therapies and cancer cardiotoxicity. Science advances. 2023;9(17), eadd4984. doi: 10.1126/sciadv.add4984

43. Ning C., Fan L., Jin M. et al. Genome-wide association analysis of left ventricular imaging-derived phenotypes identifies 72 risk loci and yields genetic insights into hypertrophic cardiomyopathy. Nat Commun. 2023;14,7900. https://doi.org/10.1038/s41467-023-43771-5

44. Brugada R., Tapscott T., Czernuszewicz G.Z., et al. Identification of a genetic locus for familial atrial fibrillation. N Engl J Med. 1997;336(13):905–911. DOI: 10.1056/NEJM199703273361302

45. Clausen A.G., Vad O.B., Andersen J.H., Olesen M.S. Loss-offunction variants in the SYNPO2L gene are associated with atrial fibrillation. Frontiers in cardiovascular medicine. 2021;8, 650667. https://doi.org/10.3389/fcvm.2021.650667

46. Ruddox V., Sandven I., Munkhaugen J.,. et al. Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: a systematic review and meta-analysis. European journal of preventive cardiology. 2017;24(14),1555-1566. https://doi. org/10.1177/204748731771576

47. Mishra A., Malik R., Hachiya T. et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature. 2022;611(7934), 115-123. https://doi.org/10.1038/s41586-022-05165-3

48. Kraja A.T., Cook J.P., Warren H.R., et al. New blood pressure– associated loci identified in meta-analyses of 475 000 individuals. Circulation: Cardiovascular Genetics. 2017;10(5), e001778. DOI: 10.1161/CIRCGENETICS.117.001778

49. Wang F., Liu Y., Liao H., et al. Genetic variants on SCN5A, KCNQ1, and KCNH2 in patients with ventricular arrhythmias during acute myocardial infarction in a Chinese population. Cardiology. 2020;145(1), 38-45. https://doi.org/10.1159/000502833

50. Olszak-Waśkiewicz M., Dziuk M., Kubik L., Kaczanowski R., Kucharczyk K. Novel KCNQ1 mutations in patients after myocardial infarction. Cardiology Journal. 2008;15(3), 252-260.


Review

For citations:


Miroshnikova V.V., Dracheva K.V., Danilov L.G., Donnikov M.Yu., Vorobev A.S., Morozkina A.V., Izumchenko A.D., Kusakin A.V., Eismont Yu.А., Kovalenko L.V., Urvantseva I.A., Glotov O.S., Pchelina S.N. SYNPO2L  gene rare variants in the development of early myocardial infarction. Medical Genetics. 2024;23(6):20-28. (In Russ.) https://doi.org/10.25557/2073-7998.2024.06.20-28

Views: 347


ISSN 2073-7998 (Print)