

Single nucleotide polymorphisms in the mark signaling pathway genes (NRAS, KRAS, BRAF) in plasma cell neoplasms
https://doi.org/10.25557/2073-7998.2024.06.3-10
Abstract
Plasma cell neoplasms are a multifocal neoplastic proliferation of plasma cells that secrete a monoclonal protein. During the formation of multiple myeloma, a multistep process of cell transformation occurs, including changes in the genetic profile due to additional events such as somatic mutations, epigenetic and chromosomal changes, which leads to the progression of the disease from monoclonal gammopathy of unspecified significance to symptomatic multiple myeloma and, ultimately, in some patients to aggressive extramedullary disease. The profile of genetic changes associated with the progression of plasma cell neoplasms includes single nucleotide polymorphisms in the genes of the MAPK signaling pathway. Proteins of the RAS and RAF families are components of the RAS/RAF/MEK/ERK signaling pathway, which transmits external signals into the cell nucleus. Single-nucleotide polymorphisms in the RAS and RAF genes lead to aberrant activation of the MAPK signaling pathway cascade reactions, causing changes in the cell cycle and mediating malignant transformation of cells.
About the Authors
T. V. RudenkovaBelarus
83, Dzerzhinsky Ave., Minsk, 220083
N. N. Klimkovich
Belarus
83, Dzerzhinsky Ave., Minsk, 220083
S. A. Kostiuk
Belarus
83, Dzerzhinsky Ave., Minsk, 220083
J. M. Kozich
Belarus
290, Ilyicha st., Gomel, 246040
References
1. Chng W.J., Dispenzieri A., Chim C.S., et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia. 2014;28:269-77. doi: 10.1038/leu.2013.247.
2. Weaver C.J., Tariman J.D. Multiple Myeloma Genomics: A Systematic Review. Semin Oncol Nurs. 2017 Aug;33(3):237-253. doi: 10.1016/j.soncn.2017.05.001.
3. Manier S., Salem K.Z., Park J., et al. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017 Feb;14(2):100-113. doi: 10.1038/nrclinonc.2016.122.
4. Li N., Lin P., Zuo Z., et al. Plasma cell myeloma with RAS/BRAF mutations is frequently associated with a complex karyotype, advanced stage disease, and poorer prognosis. Cancer Med. 2023 Jul;12(13):14293-14304. doi: 10.1002/cam4.6103.
5. Fonseca R., Bergsagel P.L., Drach J., et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009 Dec;23(12):2210-21. doi: 10.1038/ leu.2009.174.
6. Kumar S.K., Rajkumar V., Kyle R.A., et al. Multiple myeloma. Nat Rev Dis Primers. 2017 Jul 20;3:17046. doi: 10.1038/nrdp.2017.46.
7. Kyle R.A., Rajkumar S.V. Multiple myeloma. N Engl J Med. 2004 Oct 28;351(18):1860-73. doi: 10.1056/NEJMra041875.
8. Abdallah N.H., Binder M., Rajkumar S.V., et al. A simple additive staging system for newly diagnosed multiple myeloma. Blood Cancer J. 2022 Jan 31;12(1):21. doi: 10.1038/s41408-022-00611-x.
9. Morgan G.J., Walker B.A., Davies F.E. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012 Apr 12;12(5):335-48. doi: 10.1038/nrc3257.
10. Chng W.J., Gonzalez-Paz N., Price-Troska T., et al. Clinical and biological significance of RAS mutations in multiple myeloma. Leukemia. 2008 Dec;22(12):2280-4. doi: 10.1038/leu.2008.142.
11. Lionetti M., Barbieri M., Todoerti K., et al. Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation. Oncotarget. 2015 6:24205-17.
12. Liu F., Yang X., Geng M., Huang M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B. 2018 8:552–62.
13. Pasca S., Tomuleasa C., Teodorescu P., et al. KRAS/NRAS/BRAF Mutations as Potential Targets in Multiple Myeloma. Front Oncol. 2019 Oct 24;9:1137. doi: 10.3389/fonc.2019.01137.
14. Bolli N., Avet-Loiseau H., Wedge D.C., et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014; 5:2997. doi: 10.1038/ncomms3997.
15. Marshall C.J. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev. 1994 Feb;4(1):82-9. doi: 10.1016/0959-437x(94)90095-7.
16. Yoon S., Seger R. The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006 Mar;24(1):21-44. doi: 10.1080/02699050500284218.
17. Tidyman W.E., Rauen K.A. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev. 2009 Jun;19(3):230-6. doi: 10.1016/j.gde.2009.04.001.
18. Rajalingam K., Schreck R., Rapp U.R., Albert S. Ras oncogenes and their downstream targets. Biochim Biophys Acta. 2007 Aug;1773(8):1177-95. doi: 10.1016/j.bbamcr.2007.01.012.
19. Stites E.C., Ravichandran K.S. A systems perspective of ras signaling in cancer. Clin Cancer Res. 2009 Mar 1;15(5):1510-3. doi: 10.1158/1078-0432.CCR-08-2753.
20. Fernández-Medarde A., Santos E. Ras in cancer and developmental diseases. Genes Cancer. 2011 Mar;2(3):344-58. doi: 10.1177/1947601911411084.
21. Rodenhuis S., Slebos R.J. The ras oncogenes in human lung cancer. Am Rev Respir Dis. 1990 Dec;142(6 Pt 2):S27-30. doi: 10.1164/ajrccm/142.6_Pt_2.S27. PMID: 2252272.
22. Mascaux C., Iannino N., Martin B., et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005 Jan 17;92(1):131-9. doi: 10.1038/sj.bjc.6602258.
23. Vetter I.R., Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001 Nov 9;294(5545):1299-304. doi: 10.1126/science.1062023.
24. Huang L., Guo Z., Wang F., Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther. 2021 Nov 15;6(1):386. doi: 10.1038/s41392-021-00780-4.
25. Fey D., Matallanas D., Rauch J., et al. The complexities and versatility of the RAS-to-ERK signalling system in normal and cancer cells. Semin Cell Dev Biol. 2016 Oct;58:96-107. doi: 10.1016/j.semcdb.2016.06.011.
26. Forbes S.A., Bindal N., Bamford S., et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011 Jan;39(Database issue):D945-50. doi: 10.1093/nar/gkq929. Epub 2010 Oct 15.
27. Chapman M.A., Lawrence M.S., Keats J.J., et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011 Mar 24;471(7339):467-72. doi: 10.1038/nature09837.
28. Mulligan G., Lichter D.I., Di Bacco A., et al. Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy. Blood. 2014 Jan 30;123(5):632-9. doi: 10.1182/ blood-2013-05-504340.
29. Walker B.A., Boyle E.M., Wardell C.P., et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. J Clin Oncol. 2015 Nov 20;33(33):3911-20. doi: 10.1200/JCO.2014.59.1503.
30. Hu Y., Chen W., Wang J. Progress in the identification of gene mutations involved in multiple myeloma. Onco Targets Ther. 2019 May 24;12:4075-4080. doi: 10.2147/OTT.S205922.
31. Davies H., Bignell G.R., Cox C., et al. Mutations of the BRAF gene in human cancer. Nature. 2002 Jun 27;417(6892):949-54. doi: 10.1038/nature00766.
32. Liu F., Wang F., He J., et al. Correlation between KRAS mutation subtypes and prognosis in Chinese advanced non-squamous nonsmall cell lung cancer patients. Cancer Med. 2023 Jun;12(12):1312313134. doi: 10.1002/cam4.5995.
33. Tsai F.D., Lopes M.S., Zhou M., et al. K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif. Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):779-84. doi: 10.1073/pnas.1412811112.
34. Śmiech M., Leszczyński P., Kono H., et al. Emerging BRAF Mutations in Cancer Progression and Their Possible Effects on Transcriptional Networks. Genes (Basel). 2020 Nov 12;11(11):1342. doi: 10.3390/genes11111342.
35. Sen B., Peng S., Tang X., et al. Kinase-impaired BRAF mutations in lung cancer confer sensitivity to dasatinib. Sci Transl Med. 2012 May 30;4(136):136ra70. doi: 10.1126/scitranslmed.3003513.
36. Garnett M.J., Rana S., Paterson H., et al. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell. 2005 Dec 22;20(6):963-9. doi: 10.1016/j. molcel.2005.10.022.
37. Zheng G., Tseng L.H., Chen G., et al. Clinical detection and categorization of uncommon and concomitant mutations involving BRAF. BMC Cancer. 2015 Oct 24;15:779. doi: 10.1186/s12885-0151811-y.
38. Ugurel S., Thirumaran R.K., Bloethner S., et al. B-RAF and N-RAS mutations are preserved during short time in vitro propagation and differentially impact prognosis. PLoS One. 2007 Feb 21;2(2):e236. doi: 10.1371/journal.pone.0000236.
39. Leich E., Steinbrunn T. RAS mutations for better or for worse in multiple myeloma? Leuk Lymphoma. 2016;57(1):8-9. doi: 10.3109/10428194.2015.1065984.
40. Rustad E.H., Dai H.Y., Hov H., et al. BRAF V600E mutation in early-stage multiple myeloma: good response to broad acting drugs and no relation to prognosis. Blood Cancer J. 2015 Mar 20;5(3):e299. doi: 10.1038/bcj.2015.24.
41. Cheung C.H.Y., Cheng C.K., Lau K.M., et al. Prevalence and Clinicopathologic Significance of BRAF V600E Mutation in Chinese Multiple Myeloma Patients. Clin Lymphoma Myeloma Leuk. 2018 Jul;18(7):e315-e325. doi: 10.1016/j.clml.2018.05.008.
42. Kim Y., Park S.S., Min C.K., et al. KRAS, NRAS, and BRAF mutations in plasma cell myeloma at a single Korean institute. Blood Res. 2020 Sep 30;55(3):159-168. doi: 10.50 45/ br.2020.2020137.
43. Boyle E.M., Deshpande S., Tytarenko R., et al. The molecular make up of smoldering myeloma highlights the evolutionary pathways leading to multiple myeloma. Nat Commun. 2021 Jan 12;12(1):293. doi: 10.1038/s41467-020-20524-2.
Review
For citations:
Rudenkova T.V., Klimkovich N.N., Kostiuk S.A., Kozich J.M. Single nucleotide polymorphisms in the mark signaling pathway genes (NRAS, KRAS, BRAF) in plasma cell neoplasms. Medical Genetics. 2024;23(6):3-10. (In Russ.) https://doi.org/10.25557/2073-7998.2024.06.3-10