

Хромосомная нестабильность при раке желудка
https://doi.org/10.25557/2073-7998.2024.05.3-14
Аннотация
В исследовании The Cancer Genome Atlas (TCGA) с учетом выявляемых методом полноэкзомного секвенирования изменений копийности хромосомных локусов, экспрессии генов, метилирования ДНК и активности белков предложена молекулярная классификация рака желудка на четыре подтипа: подтип, ассоциированный с вирусом Эпштейна-Барр (EBV+), подтип, ассоциированный с микросателлитной нестабильностью (MSI), хромосомно-нестабильный подтип (CIN) и геномно стабильный подтип (GS). Однако в настоящее время подтип CIN недостаточно охарактеризован и не имеет эффективных и удобных маркеров для диагностики, молекулярной и гистологической верификации. Подтип CIN характеризуется наличием хромосомной нестабильности, которая проявляется повышенной частотой анеуплоидий и/или структурных хромосомных перестроек в опухолевых клетках. Структурные перестройки при раке желудка CIN являются неслучайными и выявляются в определенных хромосомных локусах, которые часто подвергаются перестройкам в результате определенной структурной организации. В обзоре рассмотрены молекулярные механизмы и возможные причины, приводящие к появлению хромосомной нестабильности в опухолях желудка, представлены характерные перестройки хромосомных локусов и их влияние на развитие и клиническое течение заболевания, а также перечислены драйверные гены, их функции и возможности их таргетирования.
Ключевые слова
Об авторах
М. В. НемцоваРоссия
19048, г. Москва, ул. Трубецкая, д. 8, стр. 2 ; 115522, г. Москва, ул. Москворечье, д. 1
А. Д. Молчанов
Россия
19048, г. Москва, ул. Трубецкая, д. 8, стр. 2 ; 115478, г. Москва, Каширское шоссе, д. 23
Е. Б. Кузнецова
Россия
19048, г. Москва, ул. Трубецкая, д. 8, стр. 2 ; 115522, г. Москва, ул. Москворечье, д. 1
И. В. Буре
Россия
119048, г. Москва, ул. Трубецкая, д. 8, стр. 2; 125993, г. Москва, ул. Баррикадная, д.2/1, стр.1
Список литературы
1. Ferlay J., Soerjomataram I., Dikshit R. et al. Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136: E359-386, doi:10.1002/ijc.29210.
2. Japanese Gastric Cancer Association Japanese Gastric Cancer Treatment Guidelines 2018 (5th Edition). Gastric Cancer. 2021; 24: 1–21, doi:10.1007/s10120-020-01042-y.
3. Grabsch H.I., Tan P. Gastric Cancer Pathology and Underlying Molecular Mechanisms. Dig Surg. 2013; 30: 150–158, doi:10.1159/000350876.
4. Hu B., El Hajj N., Sittler S., Lammert N., Barnes R., Meloni-Ehrig A. Gastric Cancer: Classification, Histology and Application of Molecular Pathology. J Gastrointest Oncol. 2012; 3: 251–261, doi:10.3978/j.issn.2078-6891.2012.021.
5. Lin X., Zhao Y., Song W.-M., Zhang B. Molecular Classification and Prediction in Gastric Cancer. Comput Struct Biotechnol J. 2015; 13: 448–458, doi:10.1016/j.csbj.2015.08.001.
6. McCracken K.W., Aihara E., Martin B., et al.. Wnt/β-Catenin Promotes Gastric Fundus Specification in Mice and Humans. Nature. 2017; 541: 182–187, doi:10.1038/nature21021.
7. Ma J., Shen H., Kapesa L., Zeng S. Lauren Classification and Individualized Chemotherapy in Gastric Cancer. Oncol Lett. 2016; 11: 2959–2964, doi:10.3892/ol.2016.4337.
8. Cancer Genome Atlas Research Network Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature. 2014; 513: 202– 209, doi:10.1038/nature13480.
9. Strand M.S., Lockhart A.C., Fields R.C. Genetics of Gastric Cancer. Surg Clin North Am. 2017; 97: 345–370, doi:10.1016/j.suc.2016.11.009.
10. Geigl J.B., Obenauf A.C., Schwarzbraun T., Speicher M.R. Defining “Chromosomal Instability.” Trends Genet. 2008; 24: 64–69, doi:10.1016/j.tig.2007.11.006.
11. Loeb L.A. A Mutator Phenotype in Cancer. Cancer Res. 2001; 61: 3230–3239.
12. Kawakami H., Zaanan A., Sinicrope F.A. Microsatellite Instability Testing and Its Role in the Management of Colorectal Cancer. Curr Treat Options Oncol. 2015; 16: 30, doi:10.1007/s11864-015-0348-2.
13. Maleki S.S., Röcken C. Chromosomal Instability in Gastric Cancer Biology. Neoplasia. 2017; 19: 412–420, doi:10.1016/j.neo.2017.02.012.
14. Sansregret L., Vanhaesebroeck B., Swanton C. Determinants and Clinical Implications of Chromosomal Instability in Cancer. Nat Rev Clin Oncol. 2018; 15: 139–150, doi:10.1038/nrclinonc.2017.198.
15. Holland A.J., Cleveland D.W. Boveri Revisited: Chromosomal Instability, Aneuploidy and Tumorigenesis. Nat Rev Mol Cell Biol. 2009; 10: 478–487, doi:10.1038/nrm2718.
16. Roy A., Cowan G., Mead A.J., et al. Perturbation of Fetal Liver Hematopoietic Stem and Progenitor Cell Development by Trisomy 21. Proc Natl Acad Sci U S A. 2012; 109: 17579–17584, doi:10.1073/pnas.1211405109.
17. Castellanos G., Valbuena D.S., Pérez E., Villegas V.E., Rondón-Lagos M. Chromosomal Instability as Enabling Feature and Central Hallmark of Breast Cancer. Breast Cancer (Dove Med Press). 2023; 15: 189–211, doi:10.2147/BCTT.S383759.
18. Wilhelm T., Said M., Naim V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel). 2020; 11: 642, doi:10.3390/genes11060642.
19. Gregan J., Polakova S., Zhang L., Tolić-Nørrelykke I.M., Cimini D. Merotelic Kinetochore Attachment: Causes and Effects. Trends Cell Biol. 2011; 21: 374–381, doi:10.1016/j.tcb.2011.01.003.
20. Ma H., He Z., Chen J., Zhang X., Song P. Identifying of Biomarkers Associated with Gastric Cancer Based on 11 Topological Analysis Methods of CytoHubba. Sci Rep. 2021; 11: 1331, doi:10.1038/s41598- 020-79235-9.
21. Mazouzi A., Velimezi G., Loizou J.I. DNA Replication Stress: Causes, Resolution and Disease. Exp Cell Res. 2014; 329: 85–93, doi:10.1016/j.yexcr.2014.09.030.
22. Cortez D. Replication-Coupled DNA Repair. Mol Cell. 2019; 74: 866–876, doi:10.1016/j.molcel.2019.04.027.
23. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022; 12: 31–46, doi:10.1158/2159-8290.CD-21-1059.
24. Chen M., Linstra R., van Vugt M.A.T.M. Genomic Instability, Inflammatory Signaling and Response to Cancer Immunotherapy. Biochim Biophys Acta Rev Cancer. 2022; 1877: 188661, doi:10.1016/j.bbcan.2021.188661.
25. Wu C.-E., Yeh D.-W., Pan Y.-R. et al. Chromosomal Instability May Not Be a Predictor for Immune Checkpoint Inhibitors from a Comprehensive Bioinformatics Analysis. Life (Basel). 2020; 10: 276, doi:10.3390/life10110276.
26. Denko N.C., Giaccia A.J., Stringer J.R., Stambrook P.J. The Human Ha-Ras Oncogene Induces Genomic Instability in Murine Fibroblasts within One Cell Cycle. Proc Natl Acad Sci U S A. 1994; 91: 5124–5128, doi:10.1073/pnas.91.11.5124.
27. Blanchet A., Bourgmayer A., Kurtz J.-E., Mellitzer G., Gaiddon C. Isoforms of the P53 Family and Gastric Cancer: A Ménage à Trois for an Unfinished Affair. Cancers (Basel). 2021; 13: 916, doi:10.3390/ cancers13040916.
28. Rasnick D., Duesberg P.H. How Aneuploidy Affects Metabolic Control and Causes Cancer. Biochem J. 1999; 340 ( Pt 3): 621–630.
29. Cahill D.P., Lengauer C., Yu J., et al. Mutations of Mitotic Checkpoint Genes in Human Cancers. Nature. 1998; 392: 300–303, doi:10.1038/32688.
30. Li G.-S., Chen G., Liu J., et al. Clinical Significance of CyclinDependent Kinase Inhibitor 2C Expression in Cancers: From Small Cell Lung Carcinoma to Pan-Cancers. BMC Pulm Med. 2022; 22: 246, doi:10.1186/s12890-022-02036-5.
31. Bibi F., Ali I., Naseer M.I., et al. Detection of Genetic Alterations in Gastric Cancer Patients from Saudi Arabia Using Comparative Genomic Hybridization (CGH). PLoS One. 2018; 13: e0202576, doi:10.1371/journal.pone.0202576.
32. Ezaki T., Yanagisawa A., Ohta K., et al. Deletion Mapping on Chromosome 1p in Well-Differentiated Gastric Cancer. Br J Cancer. 1996; 73: 424–428, doi:10.1038/bjc.1996.76.
33. Barone G., Staples C.J., Ganesh A., et al. Human CDK18 Promotes Replication Stress Signaling and Genome Stability. Nucleic Acids Res. 2016; 44: 8772–8785, doi:10.1093/nar/gkw615.
34. Kim Y.-I., Pecha R.L., Keihanian T., et al. MUC1 Expressions and Its Prognostic Values in US Gastric Cancer Patients. Cancers (Basel). 2023; 15: 998, doi:10.3390/cancers15040998.
35. Buffart T.E., Carvalho B., Mons T., et al. DNA Copy Number Profiles of Gastric Cancer Precursor Lesions. BMC Genomics. 2007; 8: 345, doi:10.1186/1471-2164-8-345.
36. Morin P.J., Sparks A.B., Korinek V., et al. Activation of BetaCatenin-Tcf Signaling in Colon Cancer by Mutations in Beta-Catenin or APC. Science. 1997; 275: 1787–1790, doi:10.1126/ science.275.5307.1787.
37. Wistuba I.I., Maitra A., Carrasco R., et al. High Resolution Chromosome 3p, 8p, 9q and 22q Allelotyping Analysis in the Pathogenesis of Gallbladder Carcinoma. Br J Cancer. 2002; 87: 432– 440, doi:10.1038/sj.bjc.6600490.
38. Buffart T.E., Carvalho B., van Grieken N.C.T., et al. Losses of Chromosome 5q and 14q Are Associated with Favorable Clinical Outcome of Patients with Gastric Cancer. Oncologist. 2012; 17: 653– 662, doi:10.1634/theoncologist.2010-0379.
39. Dong Y., Tu R., Liu H., Qing G. Regulation of Cancer Cell Metabolism: Oncogenic MYC in the Driver’s Seat. Signal Transduct Target Ther. 2020; 5: 124, doi:10.1038/s41392-020-00235-2.
40. de Manzoni G., Tomezzoli A., Di Leo A., Moore P.S., Talamini G., Scarpa A. Clinical Significance of Mutator Phenotype and Chromosome 17p and 18q Allelic Loss in Gastric Cancer. Br J Surg. 2001; 88: 419–425, doi:10.1046/j.1365-2168.2001.01667.x.
41. Zhang R., Liu Z., Chang X., et al. Clinical Significance of Chromosomal Integrity in Gastric Cancers. Int J Biol Markers. 2022; 37: 296–305, doi:10.1177/03936155221106217.
42. Inoue T., Uchino S., Shiraishi N., Adachi Y., Kitano S. Loss of Heterozygosity on Chromosome 18q in Cohesive-Type Gastric Cancer Is Associated with Tumor Progression and Poor Prognosis. Clin Cancer Res. 1998; 4: 973–977.
43. Snijders A.M., Mao J.-H. Multi-Omics Approach to Infer Cancer Therapeutic Targets on Chromosome 20q across Tumor Types. Adv Mod Oncol Res. 2016; 2: 215–223, doi:10.18282/amor.v2.i4.141.
44. Ptashkin R.N., Pagan C., Yaeger R., et al. Chromosome 20q Amplification Defines a Subtype of Microsatellite Stable, Left-Sided Colon Cancers with Wild-Type RAS/RAF and Better Overall Survival. Mol Cancer Res. 2017; 15: 708–713, doi:10.1158/1541-7786.MCR-16-0352.
45. Gong P., Xu Y., Liu M., et al. Upregulation of LINC00659 Expression Predicts a Poor Prognosis and Promotes Migration and Invasion of Gastric Cancer Cells. Oncol Lett. 2021; 22: 557, doi:10.3892/ol.2021.12818.
46. de Mello R.A., Marques A.M., Araújo A. HER2 Therapies and Gastric Cancer: A Step Forward. World J Gastroenterol. 2013; 19: 6165–6169, doi:10.3748/wjg.v19.i37.6165.
47. Tabach Y., Kogan-Sakin I., Buganim Y., et al. Amplification of the 20q Chromosomal Arm Occurs Early in Tumorigenic Transformation and May Initiate Cancer. PLoS One. 2011; 6: e14632, doi:10.1371/journal.pone.0014632.
48. Cristescu R., Lee J., Nebozhyn M., et al. Molecular Analysis of Gastric Cancer Identifies Subtypes Associated with Distinct Clinical Outcomes. Nat Med. 2015; 21: 449–456, doi:10.1038/nm.3850.
49. Kastenhuber E.R., Lowe S.W. Putting P53 in Context. Cell. 2017; 170: 1062–1078, doi:10.1016/j.cell.2017.08.028.
50. Soussi T., Wiman K.G. TP53: An Oncogene in Disguise. Cell Death Differ. 2015; 22: 1239–1249, doi:10.1038/cdd.2015.53.
51. Frum R.A., Grossman S.R. Mechanisms of Mutant P53 Stabilization in Cancer. Subcell Biochem. 2014; 85: 187–197, doi:10.1007/978-94- 017-9211-0_10.
52. Li Q., Zhang L., Jiang J., et al. CDK1 and CCNB1 as Potential Diagnostic Markers of Rhabdomyosarcoma: Validation Following Bioinformatics Analysis. BMC Med Genomics. 2019; 12: 198, doi:10.1186/s12920-019-0645-x.
53. Li B., Zhu H.-B., Song G.-D., et al. Regulating the CCNB1 Gene Can Affect Cell Proliferation and Apoptosis in Pituitary Adenomas and Activate Epithelial-to-Mesenchymal Transition. Oncol Lett. 2019; 18: 4651–4658, doi:10.3892/ol.2019.10847.
54. Izadi S., Nikkhoo A., Hojjat-Farsangi M., et al. CDK1 in Breast Cancer: Implications for Theranostic Potential. Anticancer Agents Med Chem. 2020; 20: 758–767, doi:10.2174/1871520620666200203125712.
55. Zhang X., Ma H., Zou Q., Wu J. Analysis of Cyclin-Dependent Kinase 1 as an Independent Prognostic Factor for Gastric Cancer Based on Statistical Methods. Front Cell Dev Biol. 2020; 8: 620164, doi:10.3389/fcell.2020.620164.
56. Sofi S., Mehraj U., Qayoom H., et al. ;Cyclin-Dependent Kinases in Breast Cancer: Expression Pattern and Therapeutic Implications. Med Oncol. 2022; 39: 106, doi:10.1007/s12032-022-01731-x.
57. Yasukawa M., Ando Y., Yamashita T., et al. CDK1 Dependent Phosphorylation of HTERT Contributes to Cancer Progression. Nat Commun. 2020; 11: 1557, doi:10.1038/s41467-020-15289-7.
58. Huang X., Huang Q., Chen S., et al. Efficacy of Laparoscopic Adenomyomectomy Using Double-Flap Method for Diffuse Uterine Adenomyosis. BMC Womens Health. 2015; 15: 24, doi:10.1186/s12905-015-0182-5.
59. Huang S., Ye H., Guo W., et al. CDK4/6 Inhibitor Suppresses Gastric Cancer with CDKN2A Mutation. Int J Clin Exp Med. 2015; 8: 11692–11700.
60. Zhang M., Zhang L., Hei R., et al. CDK Inhibitors in Cancer Therapy, an Overview of Recent Development. Am J Cancer Res. 2021; 11: 1913–1935.
61. Sofi S., Mehraj U., Qayoom H., et al. Targeting Cyclin-Dependent Kinase 1 (CDK1) in Cancer: Molecular Docking and Dynamic Simulations of Potential CDK1 Inhibitors. Med Oncol. 2022; 39: 133, doi:10.1007/s12032-022-01748-2.
62. Giet R., Prigent C. Aurora/Ipl1p-Related Kinases, a New Oncogenic Family of Mitotic Serine-Threonine Kinases. J Cell Sci. 1999; 112 ( Pt 21): 3591–3601, doi:10.1242/jcs.112.21.3591.
63. Bischoff J.R., Plowman G.D. The Aurora/Ipl1p Kinase Family: Regulators of Chromosome Segregation and Cytokinesis. Trends Cell Biol. 1999; 9: 454–459, doi:10.1016/s0962-8924(99)01658-x.
64. Du R., Huang C., Liu K., Li X., Dong Z. Targeting AURKA in Cancer: Molecular Mechanisms and Opportunities for Cancer Therapy. Mol Cancer. 2021; 20: 15, doi:10.1186/s12943-020-01305-3.
65. Crosio C., Fimia G.M., Loury R., et al. Mitotic Phosphorylation of Histone H3: Spatio-Temporal Regulation by Mammalian Aurora Kinases. Mol Cell Biol. 2002; 22: 874–885, doi:10.1128/MCB.22.3.874-885.2002.
66. LeRoy P.J., Hunter J.J., Hoar K.M., et al. Localization of Human TACC3 to Mitotic Spindles Is Mediated by Phosphorylation on Ser558 by Aurora A: A Novel Pharmacodynamic Method for Measuring Aurora A Activity. Cancer Res. 2007; 67: 5362–5370, doi:10.1158/0008-5472.CAN-07-0122.
67. Chou E.-J., Hung L.-Y., Tang C.-J.C., et al. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis. Cell Rep. 2016; 14: 2975–2987, doi:10.1016/j.celrep.2016.02.085.
68. Venoux M., Basbous J., Berthenet C., et al. ASAP Is a Novel Substrate of the Oncogenic Mitotic Kinase Aurora-A: Phosphorylation on Ser625 Is Essential to Spindle Formation and Mitosis. Hum Mol Genet. 2008; 17: 215–224, doi:10.1093/hmg/ddm298.
69. Fu J., Bian M., Xin G., et al. TPX2 Phosphorylation Maintains Metaphase Spindle Length by Regulating Microtubule Flux. J Cell Biol. 2015; 210: 373–383, doi:10.1083/jcb.201412109.
70. Macůrek L., Lindqvist A., Lim D., et al. Polo-like Kinase-1 Is Activated by Aurora A to Promote Checkpoint Recovery. Nature. 2008; 455: 119–123, doi:10.1038/nature07185.
71. Dutertre S., Cazales M., Quaranta M., et al. Phosphorylation of CDC25B by Aurora-A at the Centrosome Contributes to the G2-M Transition. J Cell Sci. 2004; 117: 2523–2531, doi:10.1242/jcs.01108.
72. Dar A.A., Belkhiri A., El-Rifai W. The Aurora Kinase A Regulates GSK-3beta in Gastric Cancer Cells. Oncogene. 2009; 28: 866–875, doi:10.1038/onc.2008.434.
73. Katayama H., Sasai K., Kawai H., et al. Phosphorylation by Aurora Kinase A Induces Mdm2-Mediated Destabilization and Inhibition of P53. Nat Genet. 2004; 36: 55–62, doi:10.1038/ng1279.
74. Liu M., Li Y., Zhang C., Zhang Q. Role of Aurora Kinase B in Regulating Resistance to Paclitaxel in Breast Cancer Cells. Hum Cell. 2022; 35: 678–693, doi:10.1007/s13577-022-00675-8.
75. Nie M., Wang Y., Yu Z., et al. AURKB Promotes Gastric Cancer Progression via Activation of CCND1 Expression. Aging (Albany NY). 2020; 12: 1304–1321, doi:10.18632/aging.102684.
76. Wang Z., Yu Z., Wang G.-H., et al. AURKB Promotes the Metastasis of Gastric Cancer, Possibly by Inducing EMT. Cancer Manag Res. 2020; 12: 6947–6958, doi:10.2147/CMAR.S254250.
77. Tang A., Gao K., Chu L., Zhang R., Yang J., Zheng J. Aurora Kinases: Novel Therapy Targets in Cancers. Oncotarget. 2017; 8: 23937–23954, doi:10.18632/oncotarget.14893.
78. Kanayama K., Imai H., Usugi E., Shiraishi T., Hirokawa Y.S., Watanabe M. Association of HER2 Gene Amplification and Tumor Progression in Early Gastric Cancer. Virchows Arch. 2018; 473: 559– 565, doi:10.1007/s00428-018-2433-y.
79. Neve R.M., Lane H.A., Hynes N.E. The Role of Overexpressed HER2 in Transformation. Ann Oncol. 2001; 12( Suppl 1): S9-13, doi:10.1093/annonc/12.suppl_1.s9.
80. Dang H.-Z., Yu Y., Jiao S.-C. Prognosis of HER2 Over-Expressing Gastric Cancer Patients with Liver Metastasis. World J Gastroenterol. 2012; 18: 2402–2407, doi:10.3748/wjg.v18.i19.2402.
81. Shitara K., Bang Y.-J., Iwasa S., et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N Engl J Med. 2020; 382: 2419–2430, doi:10.1056/NEJMoa2004413.
82. Cai H., Jing C., Chang X., et al. Mutational Landscape of Gastric Cancer and Clinical Application of Genomic Profiling Based on Target Next-Generation Sequencing. J Transl Med. 2019; 17: 189, doi:10.1186/s12967-019-1941-0.
83. Díaz Del Arco C., Estrada Muñoz L., Molina Roldán E., et al. Immunohistochemical Classification of Gastric Cancer Based on New Molecular Biomarkers: A Potential Predictor of Survival. Virchows Arch. 2018; 473: 687–695, doi:10.1007/s00428-018-2443-9.
84. Tsai J.-H., Jeng Y.-M., Chen K.-H., Lee C.-H., Yuan C.-T., Liau J.-Y. An Integrative Morphomolecular Classification System of Gastric Carcinoma With Distinct Clinical Outcomes. Am J Surg Pathol. 2020; 44: 1017–1030, doi:10.1097/PAS.0000000000001521.
85. Silva A.N.S., Saito Y., Yoshikawa T., et al. Increasing Frequency of Gene Copy Number Aberrations Is Associated with Immunosuppression and Predicts Poor Prognosis in Gastric Adenocarcinoma. Br J Surg. 2022; 109: 291–297, doi:10.1093/bjs/znab460.
86. Wang W., Zhang Y., Chen R., et al. Chromosomal Instability and Acquired Drug Resistance in Multiple Myeloma. Oncotarget. 2017; 8: 78234–78244, doi:10.18632/oncotarget.20829.
87. Kohlruss M., Krenauer M., Grosser B., et al. Diverse “just-Right” Levels of Chromosomal Instability and Their Clinical Implications in Neoadjuvant Treated Gastric Cancer. Br J Cancer. 2021; 125: 1621– 1631, doi:10.1038/s41416-021-01587-4.
Рецензия
Для цитирования:
Немцова М.В., Молчанов А.Д., Кузнецова Е.Б., Буре И.В. Хромосомная нестабильность при раке желудка. Медицинская генетика. 2024;23(5):3-14. https://doi.org/10.25557/2073-7998.2024.05.3-14
For citation:
Nemtsova M.V., Molchanov A.D., Kuznetsova E.B., Bure I.V. Chromosomal instability in gastric cancer. Medical Genetics. 2024;23(5):3-14. (In Russ.) https://doi.org/10.25557/2073-7998.2024.05.3-14