Preview

Medical Genetics

Advanced search

Adaptive reactions of human embryo lung fibroblasts (HELF) to a fullerene derivative modified with 3-benzothienylalanine residues

https://doi.org/10.25557/2073-7998.2024.01.3-18

Abstract

   We investigated the effort of fullerene derivative with five attached residues of 3-benzothienylalanine and one hydrogen atom (F1) on the functioning of the human embryonic lung fibroblasts (HELF). It was shown that F1 penetrates the cytoplasm of most cells in the population within 24 hours. To study the effect of F1 on HELF, two concentrations were selected: 18.3 ng/ml, which is in the range of non–toxic concentrations and a concentration close to damaging – 28 µg/ml and three incubation times of cells with compounds – 1, 3 and 24 hours. It was found that after 24 hours in the presence of low concentrations of F1, the level of ROS in cells decreases, which is due to an increase in the expression of the NRF2 gene and an increase in its functional activity. The F1 compound in a concentration close to toxic causes an increase in the expression level of the NOX4 gene and protein in cultured HELF, which leads to the synthesis of ROS in cells and oxidative modifications, and double-stranded DNA breaks of cell nuclei after 24 hours of incubations. There was no effect of F1 on the expression level of the BRCA1 gene and protein, which probably contributes to the formation of double-stranded DNA breaks in cells and maintenance at a high level after 24 hours of incubation. An increase in the expression of anti-apoptotic genes in HELF after 24 hours of cultivation with F1 may contribute to the survival of cells with damaged DNA.

About the Authors

S. V. Kostyuk
Research Centre for Medical Genetics
Russian Federation

115522

1, Moskvorechye st.

Moscow

 



E. M. Malinovskaya
Research Centre for Medical Genetics
Russian Federation

115522

1, Moskvorechye st.

Moscow



E. S. Ershova
Research Centre for Medical Genetics
Russian Federation

115522

1, Moskvorechye st.

Moscow



L. V. Kameneva
Research Centre for Medical Genetics
Russian Federation

115522

1, Moskvorechye st.

Moscow



E. A. Savinova
Research Centre for Medical Genetics
Russian Federation

115522

1, Moskvorechye st.

Moscow



S. E. Kostyuk
Research Centre for Medical Genetics
Russian Federation

115522

1, Moskvorechye st.

Moscow



T. A. Salimova
Research Centre for Medical Genetics
Russian Federation

115522

1, Moskvorechye st.

Moscow



A. V. Zhilenkov
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of RAS
Russian Federation

142432

1, Semenov Prospect

Chernogolovka



O. A. Kraevaya
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of RAS
Russian Federation

142432

1, Semenov Prospect

Chernogolovka



P. A. Troshin
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of RAS
Russian Federation

142432

1, Semenov Prospect

Chernogolovka



V. L. Izhevskaya
Research Centre for Medical Genetics
Russian Federation

115522

1, Moskvorechye st.

Moscow



S. I. Kutsev
Research Centre for Medical Genetics
Russian Federation

115522

1, Moskvorechye st.

Moscow



N. N. Veiko
Research Centre for Medical Genetics
Russian Federation

115522

1, Moskvorechye st.

Moscow



References

1. Sridharan R., Monisha B., Kumar P.S., Gayathri K.V. Carbon nanomaterials and its applications in pharmaceuticals : A brief review. Chemosphere. 2022;294:133731.

2. Xu P.Y., Li X.Q., Chen W.G., et al. Progress in antiviral fullerene research. Nanomaterials (Basel). 2022;12(15):2547

3. Tian H.-R., Chen M.-M., Wang K., et al. An unconventional hydrofullerene C<sub>66</sub>H<sub>4</sub> with symmetric heptagons retrieved in low-pressure combustion. J. Am. Chem. Soc. 2019;141(16):6651-6657.

4. Zhang H.-G., Zhuo Y.-Q., Zhang X.-M., et al. Synthesis of fullerenes from a nonaromatic chloroform through a newly developed ultrahigh-temperature flash vacuum pyrolysis apparatus. Nanomaterials. 2021;11(11):3033.

5. Kornev A.B., Khakina E.A., Troyanov S.I., et al. Facile preparation of amine and amino acid adducts of [60]fullerene using chlorofullerene C60Cl6 as a precursor. Chem. Commun. 2012;48(44):5461-3

6. Mashino T. [Development of Bio-active Fullerene Derivatives Suitable for Drug]. Yakugaku Zasshi. 2022;142(2):165-179. (In Japanese)

7. Dellinger A., Zhou Z., Connor J., et al. Application of fullerenes in nanomedicine: An update. Nanomedicine. 2013;8(7):1191-208.

8. McEwen C.N., McKay R.G., Larsen BS. C<sub>60</sub> as a radical sponge. J. Am. Chem. Soc 1992;114:4412-4.

9. Maas M. Carbon nanomaterials as antibacterial colloids. Materials. 2016 Jul 25;9(8):617.

10. Yang B., Chen Y., Shi J. Reactive oxygen species (ROS)-based nano-medicine. Chem. Rev. 2019;119(8):4881-4985.

11. Li L., Zhen M., Wang H., et al. Functional gadofullerene nanoparticles trigger robust cancer immunotherapy based on rebuilding an immunosuppressive tumor microenvironment. Nano Lett. 2020;20(6):4487-4496.

12. Zhou Y., Li J., Ma H., et al. Biocompatible <sub>[60]/[70]</sub> fullerenols: potent defense against oxidative injury induced by reduplicative chemotherapy. ACS Appl. Mater. Interfaces. 2017;9(41):35539-35547

13. Norton S.K., Wijesinghe D.S., Dellinger A., et al. Epoxyeicosatrienoic acids are involved in the C70 fullerene derivative–induced control of allergic asthma. J. Allergy Clin. Immunol. 2012;130(3):761-769.e2.

14. Zhou Z., Lenk R.P., Dellinger A., Wilson S.R., Sadler R., Kepley C.L. Liposomal formulation of amphiphilic fullerene antioxidants. Bioconjugate Chem. 2010;21(9):1656-61.

15. Basso A.S., Frenkel D., Quintana F.J., et al. Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J. Clin. Investig. 2008;118(4):1532-43.

16. Tokuyama H., Yamago S., Nakamura E., Shiraki T., Sugiura Y. Photoinduced biochemical activity of fullerene carboxylic acid. J. Am. Chem. Soc. 1993;115:7918-9.

17. Dugan L.L., Turetsky D.M., Du C., et al. Carboxyfullerenes as neuroprotective& agents. Proc. Natl. Acad. Sci. USA. 1997; 94(17): 9434-9.

18. Wong C.-W., Zhilenkov A.V., Kraevaya O.A., Mischenko D.V., Troshin P.A., Hsu S.-H. Toward understanding the anti-tumor effects of water-soluble fullerene derivatives on lung cancer cells: apoptosis or autophagy pathways? J. Med. Chem. 2019;62(15):7111-7125.

19. Sigwalt D., Holler M., Iehl J., Nierengarten J.-F., Nothisen M., Morin E., Remy J.-S. Gene delivery with polycationic fullerene hexakis-adducts. Chem. Commun. 2011;47(16):4640-2.

20. Fan J., Fang G., Zeng F., Wang X., Wu S. Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo- and photodynamic therapeutic actions. Small. 2013;9(4):613-21.

21. Sengupta J., Hussain C.M. The emergence of carbon nanomaterials as effective nano-avenues to fight against COVID-19. Materials (Basel). 2023;16(3):1068.

22. Panda M., Purohit P., Wang Y., Meher B.R. Functionalized carbon nanotubes as an alternative to traditional anti-HIV-1 protease inhibitors: An understanding towards Nano-medicine development through MD simulations. J Mol Graph Model. 2022;117:108280.

23. Sridharan R., Monisha B., Kumar P.S., Gayathri K.V. Carbon nanomaterials and its applications in pharmaceuticals : A brief review. Chemosphere. 2022;294:133731.

24. Katin K.P., Kochaev A.I., Kaya S., El-Hajjaji F., Maslov M.M. Ab initio insight into the interaction of metal-decorated fluorinated carbon fullerenes with Anti-COVID drugs. Int J Mol Sci. 2022;23(4):2345.

25. Křížová I., Dostálková A., Castro E., Prchal J., Hadravová R., Kaufman F., Hrabal, Ruml T., Llano M., Echegoyen L., Rumlová M. Fullerene derivatives prevent packaging of viral genomic RNA into HIV-1 particles by binding nucleocapsid protein. Viruses. 2021;13(12):2451.

26. Yao C., Xiang F., Xu Z. Metal oxide nanocage as drug delivery systems for Favipiravir, as an effective drug for the treatment of COVID-19: a computational study. J Mol Model. 2022;28(3):64.

27. Zhu S., Luo F., Zhu B., Ling F., Wang E.L., Liu T.Q., Wang G.X. A nanobody-mediated virus-targeting drug delivery platform for the central nervous system viral disease therapy. Microbiol Spectr. 2021;9(3):e0148721.

28. Friedman S.H., DeCamp D.L., Sijbesma R.P., Srdanov G., Wudl F., Kenyon G.L. Inhibition of the HIV-1 protease by fullerene derivatives: Model building studies and experimental verification. J. Am. Chem. Soc. 1993;115:6506-9.

29. Mashino T., Shimotohno K., Ikegami N., et al. Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg. Med. Chem. Lett. 2005;15(4):1107-9.

30. Tollas S., Bereczki I., Borbás A., Batta G., Vanderlinden E., Naesens L., Herczegh P. Synthesis of a cluster-forming si-alylthio-d-galactose fullerene conjugate and evaluation of its interaction with influenza virus hemagglutinin and neuram-inidase. Bioorg. Med. Chem. Lett. 2014;24(11):2420-3.

31. Muñoz A., Sigwalt D., Illescas B.M., et al. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus in-fection. Nat. Chem. 2016;8(1):50-7.

32. Fedorova N.E., Klimova R.R., Tulenev Y.A., et al.Carboxylic fullerene C<sub>60</sub> derivatives: efficient microbicides against herpes simplex virus and cytomegalovirus infections in vitro. Mendeleev Commun. 2012;22:254-6.

33. Fiorito S., Serafino A., Andreola F., Togna A., Togna G. Toxicity and biocompatibility of carbon nanoparticles. J Nanosci Nanotechnol. 2006;6(3):591-9.

34. Stern S.T., McNeil S.E. Nanotechnology safety concerns revisited. Toxicol Sci. 2008;101(1):4-21.

35. Lehto M., Karilainen T., Róg T., et al. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals. PLoS One. 2014;9(12):e114490.

36. Ruan H., Zhang X., Yuan J., Fang X. Effect of water-soluble fullerenes on macrophage surface ultrastructure revealed by scanning ion conductance microscopy. RSC Adv. 2022;12(34):22197-22201.

37. Park E.J., Kim H., Kim Y., Yi J., Choi K., Park K. Carbon fullerenes (C<sub>60s</sub>) can induce inflammatory responses in the lung of mice. Toxicol Appl Pharmacol. 20105;244(2):226-33.

38. Sayes C.M., Gobin A.M., Ausman K.D., Mendez J., West J.L., Colvin V.L. Nano-C<sub>60</sub> cytotoxicity is due to lipid peroxidation. Biomaterials. 2005;26(36):7587-95.

39. Sinegubova E.O., Kraevaya O.A., Volobueva A.S., et al. Water-soluble fullerene C<sub>60</sub> derivatives are effective inhibitors of influenza virus reproduction. Microorganisms. 2023;11(3):681.

40. Ershova E.S., Sergeeva V.A., Tabakov V.J., et al. Functionalized fullerene increases NF-kappaB activity and blocks genotoxic effect of oxidative stress in serum-starving human embryo lung diploid fibroblasts. Oxid. Med. Cell. Longev. 2016;2016:9895245.

41. Ershova E.S., Sergeeva V., Chausheva A.I., et al. Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis. 2016;805:46-57.

42. Kostyuk S.V., Proskurnina E.V., Savinova E.A., et al. Effects of functionalized fullerenes on ROS homeostasis determine their cytoprotective or cytotoxic properties. Nanomaterials (Basel). 2020;10(7):1405.

43. Sergeeva V., Kraevaya O., Ershova E., et al. Antioxidant properties of fullerene derivatives depend on their chemical structure: a study of two fullerene derivatives on HELFs. Oxid Med Cell Longev. 2019;2019:4398695

44. Kostyuk S.V., Proskurnina E.V., Ershova E.S., et al. The phosphonate derivative of C<sub>60</sub> fullerene induces differentiation towards the myogenic lineage in human adipose-derived mesenchymal stem cells. Int J Mol Sci. 2021;22(17):9284.

45. Winterbourn C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008;4(5):278-86

46. Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020;21(7):363-383.

47. Dinkova-Kostova A.T., Copple I.M. Advances and challenges in therapeutic targeting of NRF2. Trends Pharmacol Sci. 2023;44(3):137-149.

48. Innocenzi P., Stagi L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci. 2020;11(26):6606-6622.

49. Xu T., Lai J., Su J., Chen D., Zhao M., Li Y., Zhu B. Inhibition of H<sub>3</sub> N<sub>2</sub> influenza virus induced apoptosis by selenium nanoparticles with chitosan through ROS-mediated signaling pathways. ACS Omega. 2023;8(9):8473-8480.

50. Hasan A., Devi Ms.S., Sharma G., et al. Vathasura Kudineer, an Andrographis based polyherbal formulation exhibits immunomodulation and inhibits chikungunya virus (CHIKV) under invitro conditions. J Ethnopharmacol. 2023;302(Pt A):115762.

51. Skariyachan S., Gopal D., Deshpande D., Joshi A., Uttarkar A., Niranjan V. Carbon fullerene and nanotube are probable binders to multiple targets of SARS-CoV-2: Insights from computational modeling and molecular dynamic simulation studies. Infect Genet Evol. 2021;96:105155.

52. Kobayashi T., Yasuno T., Takahashi K., Nakamura S., Mashino T., Ohe T. Novel pyridinium-type fullerene derivatives as multitargeting inhibitors of HIV-1 reverse transcriptase, HIV-1 protease, and HCV NS5B polymerase. Bioorg Med Chem Lett. 2021;49:128267.

53. Hurmach V.V., Platonov M.O., Prylutska S.V., Scharff P., Prylutskyy Y.I., Ritter U. C<sub>60</sub> fullerene against SARS-CoV-2 coronavirus: an in silico insight. Sci Rep. 2021;11(1):17748.

54. Riley P.R., Narayan R.J. Recent advances in carbon nanomaterials for biomedical applications: A review. Curr Opin Biomed Eng. 2021;17:100262.


Review

For citations:


Kostyuk S.V., Malinovskaya E.M., Ershova E.S., Kameneva L.V., Savinova E.A., Kostyuk S.E., Salimova T.A., Zhilenkov A.V., Kraevaya O.A., Troshin P.A., Izhevskaya V.L., Kutsev S.I., Veiko N.N. Adaptive reactions of human embryo lung fibroblasts (HELF) to a fullerene derivative modified with 3-benzothienylalanine residues. Medical Genetics. 2024;23(1):3-18. (In Russ.) https://doi.org/10.25557/2073-7998.2024.01.3-18

Views: 249


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)