Preview

Medical Genetics

Advanced search

Multilocus imprinting disturbances

https://doi.org/10.25557/2073-7998.2023.12.33-44

Abstract

Genomic imprinting is an epigenetic mechanism that determines and regulates expression of homologous alleles of genes of different parental origin. Disturbances in this mechanism lead to imprinting disorders (IDs). Imprinting is regulated not only within closely located gene clusters, but also through interactions in imprinted gene networks (IGNs). These interactions may explain some of the observed differences in the phenotypes of various ImpDis and MLID (multilocus imprinting disturbances, in which multiple methylation abnormalities of imprinted regions and genes are observed), where the correlation between the epigenotype and the phenotype is not always obvious. To date, at least 20 IDs have been described in humans, both with independent and with overlapping clinical signs, including minor developmental anomalies, congenital malformations, metabolic disorders, features of intellectual, motor, and physical development. More often, in an individual with a specific ID, one specific imprinted locus is affected, but there are increasing reports of patients with MLID. The causes of MLID are pathogenic variants in genes encoding oocyte and zygotic embryo development factors, 

such as NLRP2, NLRP5, NLRP7, KHDC3L, OOEP, PADI6, TLE6, UHRF1, ZFP57, ARID4A, ZAR1, ZNF445, TRIM28. Pathogenic variants of these

genes exhibit a distinct mode of inheritance in that they become functionally significant only in female carriers. They do not affect the health of the carrier herself, but her reproductive prognosis. When providing genetic counseling, it should be taken into account that the phenotype caused by disturbances in the genes for oocyte and zygotic factors of embryo development appears only when the carriers are women. Thus, the variant can be passed on through the father’s side without causing reproductive problems.

MLID is an actively studied problem in clinical and molecular genetics. Due to the possible similarity of the clinical picture of classical ID and MLID, it is advisable for patients with suspected ID to undergo analysis for MLID to establish additional methylation patterns of imprinted DMRs, since in families of patients with MLID it is necessary to conduct medical genetic counseling with a further search for genetic variants in MLID-associated genes, to establish the risk of recurrent birth of children with ID. Also, the study of MLID-associated genes may be relevant for patients with recurrent miscarriage, recurrent hydatidiform mole, and for the study of abortive material, in the absence of chromosomal abnormalities identified in it, to determine the causes of termination and competent planning of a subsequent pregnancy.

About the Authors

E. G. Panchenko
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechie st., Moscow, 115478



O. A. Simonova
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechie st., Moscow, 115478



V. V. Strelnikov
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechie st., Moscow, 115478



References

1. Monk D., Mackay D.J.G., Eggermann T. et al. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019;20:235–248. doi: 10.1038/s41576-0180092-0

2. Eggermann T., Perez de Nanclares G., Maher E.R. et al. Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin Epigenet. 2015;7:123. doi: 10.1186/s13148-015-0143-8

3. Elbracht M., Mackay D., Begemann M., Kagan K.O., Eggermann T. Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. Hum Reprod Update. 2020;26(2):197-213. doi: 10.1093/humupd/dmz045

4. Prawitt D., Haaf T. Basics and disturbances of genomic imprinting. Medizinische Genetik. 2020;32(4): 297-304. doi: 10.1515/ medgen-2020-2042

5. Anvar Z., Chakchouk I., Demond H., Sharif M., Kelsey G., Van den Veyver I.B. DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations That Disrupt Genomic Imprinting. Genes (Basel). 2021;12(8):1214. doi: 10.3390/genes12081214

6. Krzyzewska I.M., Alders M., Maas S.M. et al. Genome-wide methylation profiling of Beckwith-Wiedemann syndrome patients without molecular confirmation after routine diagnostics. Clin Epigenetics. 2019;11(1):53. doi: 10.1186/s13148-019-0649-6

7. Sazhenova E.A., Skryabin N.A., Sukhanova N.N., Lebedev I.N. Multilocus epimutations of imprintome in the pathology of human embryo development. Molecular Biology. 2012;46:183-191. doi: 10.1134/S0026893312010207

8. Sazhenova E.A., Lebedev I.N. Epigenetic mosaicism in genomic imprinting disorders. Russian Journal of Genetics. 2019;55:1196-1207. doi: 10.1134/S1022795419100119

9. Khatib H.., Zaitoun I., Kim E.S. Comparative analysis of sequence characteristics of imprinted genes in human, mouse, and cattle. Mamm Genome. 2007;18:538–547. doi: 10.1007/s00335-007-9039-z

10. Soellner L., Begemann M., Mackay D.J. et al. Recent Advances in Imprinting Disorders. Clin Genet. 2017;91(1):3-13. doi: 10.1111/ cge.12827

11. Stelzer Y., Sagi I., Yanuka O., Eiges R., Benvenisty N. The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nat Genet. 2014;46(6):551-557. doi: 10.1038/ng.2968

12. Eggermann T., Davies J.H., Tauber M., van den Akker E., HokkenKoelega A., Johansson G., Netchine I. Growth Restriction and Genomic Imprinting-Overlapping Phenotypes Support the Concept of an Imprinting Network. Genes. 2021;12:585. doi: 10.3390/ genes12040585

13. Girardot M., Cavaillé J., Feil R. Small regulatory RNAs controlled by genomic imprinting and their contribution to human disease. Epigenetics. 2012;7(12):1341-1348. doi: 10.4161/epi.22884

14. Elbracht M., Binder G., Hiort O., Kiewert C., Kratz C., Eggermann T. Clinical spectrum and management of imprinting disorders. Medizinische Genetik. 2020;32(4):321-334. doi: 10.1515/ medgen-2020-2044

15. Bruce S. Genomic and epigenetic investigations of Silver-Russell syndrome and growth restriction. Doctoral Theses. 2009. http://hdl. handle.net/10616/38303

16. Eggermann T., Yapici E., Bliek J. et al. Trans-acting genetic variants causing multilocus imprinting disturbance (MLID): common mechanisms and consequences. Clin Epigenet. 2022;14:41. doi: 10.1186/s13148-022-01259-x

17. Zaletaev D.V., Nemtsova M.V., Strelnikov V.V. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Molecular Biology. 2022;56(1):1-28. doi: 10.1134/S0026893321050149

18. Mackay D., Bliek J., Kagami M. et al. First step towards a consensus strategy for multi-locus diagnostic testing of imprinting disorders. Clin Epigenetics. 2022;14(1):143. doi: 10.1186/s13148-022-01358-9

19. Soellner L, Monk D, Rezwan FI, Begemann M, Mackay D, Eggermann T. Congenital imprinting disorders: Application of multilocus and high throughput methods to decipher new pathomechanisms and improve their management. Mol Cell Probes. 2015;29(5):282-290. doi: 10.1016/j.mcp.2015.05.003

20. Elbracht M., Mackay D., Begemann M., Kagan K.O., Eggermann T. Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. Hum Reprod Update. 2020;26(2):197-213. doi: 10.1093/humupd/dmz045

21. Bilo L., Ochoa E., Lee S. et al. Molecular characterisation of 36 multilocus imprinting disturbance (MLID) patients: a comprehensive approach. Clin Epigenet. 2023;15:35. doi: 10.1186/s13148-02301453-5

22. Solovova O.A., Chernykh V.B. Genetics of Oocyte Maturation Defects and Early Embryo Development Arrest. Genes (Basel). 2022;13(11):1920. doi: 10.3390/genes13111920

23. Begemann M., Rezwan F.I., Beygo J. et al. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J Med Genet. 2018 Jul;55(7):497504. doi: 10.1136/jmedgenet-2017-105190

24. Docherty L., Rezwan F., Poole R. et al. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat Commun. 2015;6:8086. doi: 10.1038/ ncomms9086

25. Monk D., Sanchez-Delgado M., Fisher R. NLRPs, the subcortical maternal complex and genomic imprinting. Reproduction. 2017;154(6):R161-R170. doi: 10.1530/REP-17-0465

26. Demond H., Anvar Z., Jahromi B.N., Sparago A., Verma A., Davari M., et al.; A KHDC3L mutation resulting in recurrent hydatidiform mole causes genome-wide DNA methylation loss in oocytes and persistent imprinting defects post-fertilisation. Genome Med. 2019;11(1):84. doi: 10.1186/s13073-019-0694-y

27. Pignata L., Cecere F., Verma A. et al. Novel genetic variants of KHDC3L and other members of the subcortical maternal complex associated with Beckwith-Wiedemann syndrome or Pseudohypoparathyroidism 1B and multi-locus imprinting disturbances. Clin Epigenetics. 2022;14(1):71. doi: 10.1186/s13148022-01292-w

28. Eggermann T., Kadgien G., Begemann M., Elbracht M. Biallelic PADI6 variants cause multilocus imprinting disturbances and miscarriages in the same family. Eur J Hum Genet. 2021;29(4):575580. doi: 10.1038/s41431-020-00762-0

29. Geoffron S., Abi Habib W., Chantot-Bastaraud S. et al. Chromosome 14q32.2 Imprinted Region Disruption as an Alternative Molecular Diagnosis of Silver-Russell Syndrome. J Clin Endocrinol Metab. 2018;103(7):2436-2446. doi: 10.1210/jc.2017-02152

30. Eggermann T. Maternal Effect Mutations: A Novel Cause for Human Reproductive Failure. Geburtshilfe Frauenheilkd. 2021;81(7):780788. doi: 10.1055/a-1396-4390

31. Boonen S.E., Mackay D.J., Hahnemann J.M. et al. Transient neonatal diabetes, ZFP57, and hypomethylation of multiple imprinted loci: a detailed follow-up. Diabetes Care. 2013;36(3):505-12. doi: 10.2337/ dc12-0700

32. Monteagudo-Sánchez A., Hernandez Mora J.R., Simon C. et al. The role of ZFP57 and additional KRAB-zinc finger proteins in the maintenance of human imprinted methylation and multi-locus imprinting disturbances. Nucleic Acids Res. 2020;48(20):11394-11407. doi: 10.1093/nar/gkaa837

33. Kagami M., Hara-Isono K., Matsubara K. et al. ZNF445: a homozygous truncating variant in a patient with Temple syndrome and multilocus imprinting disturbance. Clin Epigenetics. 2021;13(1):119. doi: 10.1186/s13148-021-01106-5

34. Kim J.D., Kim H., Ekram M.B., Yu S., Faulk C., Kim J. Rex1/Zfp42 as an epigenetic regulator for genomic imprinting. Human molecular genetics. 2011;20(7):1353-1362. doi: 10.1093/hmg/ddr017

35. Fontana L., Bedeschi M.F., Maitz S. et al. Characterization of multilocus imprinting disturbances and underlying genetic defects in patients with chromosome 11p15.5 related imprinting disorders. Epigenetics. 2018;13(9):897-909. doi: 10.1080/15592294.2018.1514230

36. Sanchez-Delgado M., Riccio A., Eggermann T. et al. Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans. Trends Genet. 2016;32(7):444-455. doi: 10.1016/j.tig.2016.05.001

37. Brioude F., Kalish J., Mussa A. et al. Clinical and molecular diagnosis, screening and management of Beckwith–Wiedemann syndrome: an international consensus statement. Nat Rev Endocrinol. 2018;14:229– 249. doi: 10.1038/nrendo.2017.166

38. Williams C.A., Beaudet A.L., Clayton-Smith J. et al. Angelman syndrome 2005: updated consensus for diagnostic criteria. Am J Med Genet A. 2006;140(5):413-418. doi: 10.1002/ajmg.a.31074

39. Wakeling E.L., Brioude F., Lokulo-Sodipe O. et al. Diagnosis and management of Silver-Russell syndrome: first international consensus statement. Nat Rev Endocrinol. 2017;13(2):105-124. doi: 10.1038/ nrendo.2016.138

40. Hokken-Koelega A.C., van der Steen M., Boguszewski M.C. et al. International consensus guideline on small for gestational age: etiology and management from infancy to early adulthood. Endocrine Reviews. 2023;44(3):539–565. doi: 10.1210/endrev/bnad002

41. Greeley S.A.W, Polak M., Njølstad P.R. et al. ISPAD Clinical Practice Consensus Guidelines 2022: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2022;23(8):1188-1211. doi: 10.1111/pedi.13426

42. Mantovani G., Bastepe M., Monk D. et al. Recommendations for Diagnosis and Treatment of Pseudohypoparathyroidism and Related Disorders: An Updated Practical Tool for Physicians and Patients. Horm Res Paediatr. 2020;93(3):182-196. doi: 10.1159/000508985

43. Mackay D.J., Eggermann T., Buiting K. et al. Multilocus methylation defects in imprinting disorders. Biomol Concepts. 2015;6(1):47-57. doi: 10.1515/bmc-2014-0037

44. Baple E.L., Poole R.L., Mansour S. et al. An atypical case of hypomethylation at multiple imprinted loci. Eur J Hum Genet. 2011;19(3):360-362. doi: 10.1038/ejhg.2010.218

45. Bens S., Kolarova J., Beygo J. et al. Phenotypic spectrum and extent of DNA methylation defects associated with multilocus imprinting disturbances. Epigenomics. 2016;8(6):801-816. doi: 10.2217/epi-2016-0007

46. Grosvenor S.E., Davies J.H., Lever M., Sillibourne J., Mackay D.J.G., Temple I.K. A patient with multilocus imprinting disturbance involving hypomethylation at 11p15 and 14q32, and phenotypic features of Beckwith-Wiedemann and Temple syndromes. Am J Med Genet A. 2022;188(6):1896-1903. doi: 10.1002/ajmg.a.62717

47. Bakker B., Sonneveld L.J., Woltering M.C., Bikker H., Kant S.G. A girl with Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type 1B due to multiple imprinting defects. The Journal of Clinical Endocrinology & Metabolism. 2015;100(11):3963-3966. doi: 10.1210/jc.2015-2260

48. Sano S., Matsubara K., Nagasaki K. et al. Beckwith-Wiedemann syndrome and pseudohypoparathyroidism type Ib in a patient with multilocus imprinting disturbance: a female-dominant phenomenon? J Hum Genet. 2016;61(8):765-769. doi: 10.1038/jhg.2016.45

49. Eggermann T., Brioude F., Russo S. et al. Prenatal molecular testing for Beckwith-Wiedemann and Silver-Russell syndromes: a challenge for molecular analysis and genetic counseling. European journal of human genetics. 2016;24(6):784-793. doi: 10.1038/ejhg.2015.224

50. Dufke A., Eggermann T., Kagan K.O., Hoopmann M., Elbracht M.. Prenatal testing for Imprinting Disorders: A clinical perspective. Prenat Diagn. 2023;43(8):983-992. doi: 10.1002/pd.6400

51. Eggermann T. Prenatal Detection of Uniparental Disomies (UPD): Intended and Incidental Finding in the Era of Next Generation Genomics. Genes (Basel). 2020;11(12):1454. doi: 10.3390/ genes11121454

52. Hu J., Zhang Y., Yang Y., Wang L., Sun Y., Dong M. Case report: Prenatal diagnosis of Kagami-Ogata syndrome in a Chinese family. Front Genet. 2022;13:959666. doi: 10.3389/fgene.2022.959666


Review

For citations:


Panchenko E.G., Simonova O.A., Strelnikov V.V. Multilocus imprinting disturbances. Medical Genetics. 2023;22(12):33-44. (In Russ.) https://doi.org/10.25557/2073-7998.2023.12.33-44

Views: 620


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)