Preview

Medical Genetics

Advanced search

Editing the c.3846G>A (p.Trp1282*) mutation in the CFTR gene in iPSCs using adenine editor

https://doi.org/10.25557/2073-7998.2023.11.20-26

Abstract

Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the CFTR gene, leading to an imbalance of chloride and sodium ions in the epithelial cells of various organs. Nonsense mutations in the CFTR gene are present in 10% of CF patients, with the most common being c.3846G>A (p.Trp1282*, W1282X). Current CFTR-modulator therapy is ineffective against this class of mutations, leaving patients with nonsense mutations in the CFTR gene without effective treatment. Etiotropic therapy for CF can be developed based on the latest genome editing methods, such as base editors, which allow precise changes to nucleotides in the genome. Adenine base editors allow for targeted correction of nonsense mutations. The aim of this study was to evaluate the effectiveness of correcting the c.3846G>A mutation in induced pluripotent stem cells (iPSCs) from a CF patient using an adenine base editor. The xCas9(3.7)-ABE(7.10) editor was used in combination with a guide RNA (in a separate B52-1282 plasmid) to convert c.3846A>G. Plasmids were transfected into iPSCs with the F508del/c.3846G>A genotype in the CFTR gene using electroporation. The effectiveness of correction was evaluated 48 hours later using deep targeted sequencing. The results showed a conversion frequency of 10.9% of c.3846A>G alleles, with no increase in unwanted changes (indels) in the editing locus compared to the untransfected control. Therefore, this study demonstrates that the adenine base editor xCas9(3.7)-ABE(7.10) allows for correction of the c.3846G>A mutation in the CFTR gene in 10.9% of alleles in iPSCs from a CF patient without introducing additional mutations in the editing locus.

About the Authors

E. V. Kondrateva
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechie st., Moscow, 115522



A. G. Demchenko
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechie st., Moscow, 115522



A. V. Lavrov
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechie st., Moscow, 115522



S. A. Smirnikhina
Research Centre for Medical Genetics
Russian Federation

1, Moskvorechie st., Moscow, 115522



References

1. Shteinberg M., Haq I.J., Polineni D., Davies J.C. Cystic fibrosis. Lancet. 2021 Jun 5;397(10290):2195-2211. doi: 10.1016/S01406736(20)32542-3

2. Lopes-Pacheco M. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front Pharmacol. 2020 Feb 21;10:1662. doi: 10.3389/fphar.2019.01662

3. Zainal Abidin N., Haq I.J., Gardner A.I., Brodlie M. Ataluren in cystic fibrosis: development, clinical studies and where are we now? Expert Opin Pharmacother. 2017 Sep;18(13):1363-1371. doi: 10.1080/14656566.2017.1359255

4. Doudna J.A. The promise and challenge of therapeutic genome editing. Nature. 2020 Feb;578(7794):229-236. doi: 10.1038/s41586020-1978-5

5. Anzalone A.V., Koblan L.W., Liu D.R. Genome editing with CRISPRCas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020 Jul;38(7):824-844. doi: 10.1038/s41587-020-0561-9

6. Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu .DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016 May 19;533(7603):4204. doi: 10.1038/nature17946

7. Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017 Nov 23;551(7681):464-471. doi: 10.1038/nature24644

8. Lavrov A.V., Varenikov G.G., Skoblov M.Y. Genome scale analysis of pathogenic variants targetable for single base editing. BMC Med Genomics. 2020 Sep 18;13(Suppl 8):80. doi: 10.1186/s12920-020-00735-8

9. Petrova N., Balinova N., Marakhonov A., Vasilyeva T., Kashirskaya N., Galkina V., Ginter E., Kutsev S., Zinchenko R. Ethnic Differences in the Frequency of CFTR Gene Mutations in Populations of the European and North Caucasian Part of the Russian Federation. Front Genet. 2021 Jun 16;12:678374. doi: 10.3389/fgene.2021.678374

10. Регистр пациентов с муковисцидозом в Российской Федерации. 2020 год. Под редакцией Е.И. Кондратьевой, С.А. Красовского, М.А. Стариновой, А.Ю. Воронковой, Е.Л. Амелиной, Н.Ю. Каширской, С.Н. Авдеева, С.И. Куцева. Москва: МЕДПРАКТИКА-М, 2022. 68 с.

11. Kondrateva E., Demchenko A., Slesarenko Y,. Pozhitnova V., Yasinovsky M., Amelina E., Tabakov V., Voronina E., Lavrov A., Smirnikhina S. Generation of two induced pluripotent stem cell lines (RCMGi004-A and -B) from human skin fibroblasts of a cystic fibrosis patient with compound heterozygous F508del/W1282X mutations. Stem Cell Research 2021; 52: 102232. DOI: 10.1016/j.scr.2021.102232

12. Hwang G.H., Park J., Lim K., Kim S., Yu J., Yu E., Kim S.T., Eils R., Kim J.S., Bae S. Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics. 2018 Dec 27;19(1):542. doi: 10.1186/s12859-018-2585-4

13. Clement K., Rees H., Canver M.C., Gehrke J.M., Farouni R., Hsu J.Y., Cole M.A., Liu D.R., Joung J.K., Bauer D.E., Pinello L. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. 2019 Mar; 37(3):224-226. doi: 10.1038/s41587-019-0032-3

14. Hu J.H., Miller S.M., Geurts M.H., Tang W., Chen L., Sun N., Zeina C..M, Gao X., Rees H.A., Lin Z., Liu D.R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018 Apr 5;556(7699):57-63. doi: 10.1038/nature26155

15. Rees H.A., Liu D.R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018 Dec;19(12):770-788. doi: 10.1038/s41576-018-0059-1

16. Wilschanski M. Class 1 CF Mutations. Front Pharmacol. 2012 Jun 20;3:117. doi: 10.3389/fphar.2012.00117

17. Demchenko A., Kondrateva E., Tabakov V., Efremova A., Salikhova D., Bukharova T., Goldshtein D., Balyasin M., Bulatenko N., Amelina E., Lavrov A., Smirnikhina S. Airway and Lung Organoids from HumanInduced Pluripotent Stem Cells Can Be Used to Assess CFTR Conductance. Int. J. Mol. Sci. 2023, 24, 6293. https://doi.org/10.3390/ijms24076293

18. Maxwell K.G., Millman J.R. Applications of iPSC-derived beta cells from patients with diabetes. Cell Rep Med. 2021 Apr 20;2(4):100238. doi: 10.1016/j.xcrm.2021.100238

19. Fleischer A., Vallejo-Díez S., Martín-Fernández J.M., SánchezGilabert A., Castresana M., Del Pozo A., Esquisabel A., Ávila S., Castrillo J.L., Gaínza E., Pedraz J.L., Viñas M., Bachiller D. iPSCDerived Intestinal Organoids from Cystic Fibrosis Patients Acquire CFTR Activity upon TALEN-Mediated Repair of the p.F508del Mutation. Mol Ther Methods Clin Dev. 2020 Apr 18;17:858-870. doi: 10.1016/j.omtm.2020.04.005

20. Palmer D.J., Turner D.L., Ng P. A Single «All-in-One» HelperDependent Adenovirus to Deliver Donor DNA and CRISPR/ Cas9 for Efficient Homology-Directed Repair. Mol Ther Methods Clin Dev. 2020 Feb 4;17:441-447. doi: 10.1016/j.omtm.2020.01.014

21. Suzuki S., Chosa K., Barillà C., Yao M., Zuffardi O., Kai H., Shuto T., Suico M.A., Kan Y.W., Sargent R.G., Gruenert D.C. Seamless Gene Correction in the Human Cystic Fibrosis Transmembrane Conductance Regulator Locus by Vector Replacement and Vector Insertion Events. Front Genome Ed. 2022 Apr 6;4:843885. doi: 10.3389/fgeed.2022.843885

22. Johnson L.G., Olsen J.C., Sarkadi B., Moore K.L., Swanstrom R., Boucher R.C. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet. 1992 Sep;2(1):21-5. doi: 10.1038/ng0992-21

23. Geurts M.H., de Poel E., Amatngalim G.D., et al. CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank [published online ahead of print, 2020 Feb 13]. Cell Stem Cell. 2020;S1934-5909(20)30019-9. doi:10.1016/j.stem.2020.01.019

24. Krishnamurthy S., Traore S., Cooney A.L., Brommel C.M., Kulhankova K., Sinn P.L., Newby GA, Liu DR, McCray PB. Functional correction of CFTR mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Res. 2021 Oct 11;49(18):10558-10572. doi: 10.1093/nar/gkab788

25. Chiavetta R.F., Titoli S., Barra V., Cancemi P., Melfi R., Di Leonardo A. Site-Specific RNA Editing of Stop Mutations in the CFTR mRNA of Human Bronchial Cultured Cells. Int J Mol Sci. 2023 Jun 30;24(13):10940. doi: 10.3390/ijms241310940

26. Melfi R., Cancemi P., Chiavetta R., Barra V., Lentini L., Di Leonardo A. Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons. Int J Mol Sci. 2020 Jul 6;21(13):4781. doi: 10.3390/ijms21134781

27. Cuevas-Ocaña S., Yang J.Y., Aushev M., Schlossmacher G., Bear C.E., Hannan N.R.F., Perkins N.D., Rossant J., Wong A.P., Gray M.A. A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells. Int J Mol Sci. 2023 Jun 17;24(12):10266. doi: 10.3390/ijms241210266

28. Erwood S., Laselva O., Bily T.M.I., Brewer R.A., Rutherford A.H., Bear C.E., Ivakine E.A. Allele-Specific Prevention of Nonsense-Mediated Decay in Cystic Fibrosis Using Homology-Independent Genome Editing. Mol Ther Methods Clin Dev. 2020 May 12;17:11181128. doi: 10.1016/j.omtm.2020.05.002

29. Santos L., Mention K., Cavusoglu-Doran K., Sanz D.J., Bacalhau M., Lopes-Pacheco M., Harrison P.T., Farinha C.M. Comparison of Cas9 and Cas12a CRISPR editing methods to correct the W1282X-CFTR mutation. J Cyst Fibros. 2021 Jun 5:S15691993(21)00167-3. doi: 10.1016/j.jcf.2021.05.014


Review

For citations:


Kondrateva E.V., Demchenko A.G., Lavrov A.V., Smirnikhina S.A. Editing the c.3846G>A (p.Trp1282*) mutation in the CFTR gene in iPSCs using adenine editor. Medical Genetics. 2023;22(11):20-26. (In Russ.) https://doi.org/10.25557/2073-7998.2023.11.20-26

Views: 384


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)