Study of nuclear genome polymorphism of the modern group of Italians of Crimea
https://doi.org/10.25557/2073-7998.2023.10.48-62
Abstract
The article presents the results of a comprehensive anthropogenetic analysis of the group of modern “Italians of Crimea”, who are descendants of Italian migrants from the Apennine Peninsula from the late 18th – early 20th centuries. The genetic study is based on the analysis of genotype and allele prevalence of seven autosomal polymorphic genes (PAH, TH01, NOS3, SLC6A3, CCR5, ACE, FABP2) among the Italians of Crimea and comparison of their frequencies with the world distribution to determine the genetic characteristics of the studied group and its position in the space of other world populations. According to the data of five markers, the descendants of Italians are closer to European populations and closest to Russians, which indicates the degree of mestizatisation of this group, as well as a high level of heterozygosity. According to the calculated distances for FABP2, PAH, TH01, they gravitate to the historical ancestral population of Italians of Italy, but it is not possible to determine the territorial origin. The analysis of the surnames of “Italians of Crimea” and their ancestors as reliable quasi-genetic markers showed that the majority of migrants (52.53%) were of northern origin, 27.72% of migrants originated from the southern regions of the Apennine Peninsula, and 19.75% from the central region of Italy. The transformations that the original surnames of Italian migrants underwent over time reflect the complex process of adaptation of Italian groups in the Black Sea-Azov region. The results of the study add to the knowledge on the ethnic genomics of Italians.
About the Authors
S. V. MakarovRussian Federation
1, Moskvorechie st., Moscow, 115522
N. V. Balinova
Russian Federation
1, Moskvorechie st., Moscow, 115522
S. Zini
Russian Federation
32A, Leninsky Prospekt, Moscow, 119334
N. V. Khokhlov
Russian Federation
32A, Leninsky Prospekt, Moscow, 119334
L. S. Bychkovskaya
Russian Federation
1, Moskvorechie st., Moscow, 115522
N. Kh. Spitsyna N.
Russian Federation
32A, Leninsky Prospekt, Moscow, 119334
References
1. Pisarevskij G.G. Izbrannye proizvedenija po istorii inostrannoj kolonizacii [Selected works on the history of foreign colonization]. Moskva: ZAO «MSNK-press», 2011. P. 90-106, 117. (In Russ.)
2. Zarubin A.G., Zarubin V.G. Bez pobeditelej: Iz istorii Grazhdanskoj vojny v Krymu. 2e izd., ispr. i dop. [Without winners: From the history of the Civil War in Crimea. 2nd ed., rev. and add.]— Simferopol’: Antikva. 2008. P. 272. (In Russ.)
3. Ukaz Prezidenta Rossijskoj Federacii ot 12.09.2015 g. N 458. [Decree of the President of the Russian Federation dated September 12, 2015 N 458] .Available at:: http://kremlin.ru/acts/bank/38356 (In Russ.)
4. World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-4. doi: 10.1001/jama.2013.281053.
5. Akhmetova, V.L., Khusainova, R.I., Yuryev, E.B. et al. Analysis of polymorphism at nine nuclear genome DNA loci in Maris. Russ J Genet. 2006; 42:192–207. https://doi.org/10.1134/S102279540602013X
6. Nei M. Genetic distances between populations. Am. Nat. 1972;106:283-292.
7. Nei M., Tajima F., Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of molecular evolution. 1983;19(2):153-170.
8. Sneath P.H., Sokal, R.R. Numerical Taxonomy: The Principles and Practice of Numerical Classification. 1st Edition, W. H. Freeman, San Francisco. 1973.
9. Saitou N., Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic tree. Mol. Biol. Evol. 1987; 4:406-425.
10. Devic P.S., Ristic S., Flego V. et al. Angiotensin-converting enzyme insertion/deletion gene polymorphism in lung cancer patients. Genetic testing and molecular biomarkers. 2012;16(7):722-725.
11. Jelas I.G., Devic I., Karlovic D. Cloninger’s temperament and character dimensions and dopaminergic genes: DAT1 VNTR and COMT Val158Met polymorphisms. Psychiatria Danubina. 2018;30(1):47-56.
12. Marjanovic D., Bakal N., Pojskic N. et al. Allele frequencies for 15 short tandem repeat loci in a representative sample of Bosnians and Herzegovinians. Forensic science international. 2006;156(1):79-81.
13. Ristic S., Starcevic Cizmarevi N., Brajenovic-Milic B. et al. Frequency of CCR5 gene 32-basepair deletion in Croatian normal population. Croatian medical journal. 2005;46(4):693-694.
14. Zeljko H.M., Skaric-Juric T., Narancic N.S. et al. E2 allele of the apolipoprotein E gene polymorphism is predictive for obesity status in Roma minority population of Croatia. Lipids in health and disease. 2011;10:9.
15. Hubacek J.A., Dusek L., Majek O. et al. ACE I/D polymorphism in Czech first-wave SARS-CoV-2-positive survivors. Clinica chimica acta; international journal of clinical chemistry. 2021;519:206-209.
16. Hubacek J.A., Dusek L., Majek O. et al. CCR5Delta32 deletion as a protective factor in Czech first-wave COVID-19 subjects. Physiological research. 2021;70(1):111-115.
17. Schuller M., Stelcl M., Rybnieek O. et al. The ecNOS gene in allergic Czech children. Allergy. 2002;57(4):368-369.
18. Sery O., Paclt I., Drtilkova I. et al. A 40-bp VNTR polymorphism in the 3’-untranslated region of DAT1/SLC6A3 is associated with ADHD but not with alcoholism. Behavioral and brain functions : BBF. 2015;11:21.
19. Simkova H., Faltus V., Marvan R. et al. Allele frequency data for 17 short tandem repeats in a Czech population sample. Forensic science international. Forensic Sci Int Genet. 2009;4(1):e15-e17.
20. Barath A., Endreffy E., Bereczki C. et al. Endothelin-1 gene and endothelial nitric oxide synthase gene polymorphisms in adolescents with juvenile and obesity-associated hypertension. Acta physiologica Hungarica. 2007;94(1-2):49-66.
21. Feher A., Juhasz A., Pakaski M. et al. Association between the 9 repeat allele of the dopamine transporter 40 bp variable tandem repeat polymorphism and Alzheimer’s disease. Psychiatry research. 2014;220(1-2):730-731.
22. Fiatal S., Szigethy E., Szeles G. et al. Insertion/deletion polymorphism of angiotensin-1 converting enzyme is associated with metabolic syndrome in Hungarian adults. Journal of the reninangiotensin-aldosterone system : JRAAS. 2011;12(4):531-538.
23. Furedi S., Woller J., Padar Z. Hungarian population data for the STR systems TH01 and VWA. International journal of legal medicine. 1995;108(1):48-49.
24. Juhasz E., Beres J., Kanizsai S. et al. The Consequence of a Founder Effect: CCR5-del32, CCR2-64I and SDF1-3’A Polymorphism in Vlach Gypsy Population in Hungary. Pathology oncology research : POR. 2012;18(2):177-182.
25. Devendran A., Nampoothiri S., Shewade D.G. et al. Allele, Genotype and Haplotype Structures of Functional Polymorphic Variants in Endothelial Nitric Oxide Synthase (eNOS), Angiotensinogen (ACE) and Aldosterone Synthase (CYP11B2) Genes in Healthy Pregnant Women of Indian Ethnicity. Journal of reproduction & infertility. 2015;16(4):180-192.
26. Hadi F., Dato S., Carpi F.M. et al. A genetic-demographic approach reveals a gender-specific association of SLC6A3/DAT1 40bp-VNTR with life-expectancy. Biogerontology. 2015;16(3):365-373.
27. Martinson J.J., Chapman N.H., Rees D.C. et al. Global distribution of the CCR5 gene 32-basepair deletion. Nature genetics. 1997;16(1):100-103.
28. Pastore L., Vuttariello E., Sarrantonio C. et al. Allele frequency distributions at several variable number of tandem repeat (VNTR) and short tandem repeat (STR) loci in a restricted Caucasian population from south Italy and their evaluation for paternity and forensic use. Molecular and cellular probes. 1996;10(4):299-308.
29. Santovito A., Galli G., Ruberto S. Evaluation of the possible association of body mass index and four metabolic gene polymorphisms with longevity in an Italian cohort: a role for APOE, eNOS and FTO gene polymorphisms. Annals of human biology. 2019;46(5):425-429.
30. Galeeva A.R., Khusnutdinova E.K., Slominsky P.A. et al. Distribution of the 32 bp deletion in the CCR5 chemokine receptor gene in populations of the Volga-Ural region. Russ J Genet. 1998;34(8):976-978.
31. Zhivotovsky L.A., Akhmetova V.L., Fedorova S.A. et al. An STR database on the Volga-Ural population. Forensic Sci Int Genet. 2009;3(4):e133-e136.
32. Bondarenko E.A., Shadrina M.I., Grishkina M.N. et al. Genetic Analysis of BDNF, GNB3, MTHFR, ACE and APOE Variants in Major and Recurrent Depressive Disorders in Russia. International journal of medical sciences. 2016;13(12):977-983.
33. Chistiakov D.A., voron’ko O.E., Savost’ianov K.V. et al. Polymorphic markers of endothelial NO-synthase and angiotensin II vascular receptor genes and predisposition to ischemic heart disease. Russ J Genet. 2000;36(12):1440-1444.
34. Kazantseva A., Gaysina D., Malykh S. et al. The role of dopamine transporter (SLC6A3) and dopamine D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) gene polymorphisms in personality traits. Progress in neuro-psychopharmacology & biological psychiatry. 2011;35(4):1033-1040.
35. Ryabov G.S., Kazennova E.V., Bobkova M.R. et al. Prevalence of alleles associated with HIV resistance in Russia. Genetic testing. 2004;8(1):73-76.
36. Zhivotovsky L.A., Malyarchuk B.A., Derenko M.V. et al. Developing STR databases on structured populations: the native South Siberian population versus the Russian population. Forensic Sci Int Genet. 2009;3(4):e111-e116.
37. Vasilyeva T.A., Petrova N.V., Timkovskaya E.E. et al. Medikogeneticheskoye izucheniye naseleniya Respubliki Tatarstan. Soobshcheniye VI. Populyatsionno-geneticheskoye izucheniye etnogeograficheskikh grupp tatar (analiz devyati polimorfnykh DNKlokusov yadernogo genoma) [Medical genetic study of the population of the Republic of Tatarstan. VI. Population genetic study of ethnogeographical groups of Tatars (analysis of nine polymorphic DNA loci of the nuclear genome)]. Meditsinskaya genetika [Medical genetics]. 2013;12(5):3-20. (In Russ.)
38. Bermisheva M.A., Petrova N.V., Zinchenko R.A. et al. Population study of the Udmurt population: analysis of ten polymorphic DNA loci of the nuclear genome. Russ J Genet. 2007;43(5):563-578.
39. Coto-Segura P., Coto E., Mas-Vidal A. et al. Influence of endothelial nitric oxide synthase polymorphisms in psoriasis risk. Archives of dermatological research. 2011;303(6):445-449.
40. Fiuza-Luces C., Ruiz J.R., Rodriguez-Romo G. et al. Is the ACE I/D polymorphism associated with extreme longevity? A study on a Spanish cohort. Journal of the renin-angiotensin-aldosterone system: JRAAS. 2011;12(3):202-207.
41. Lareu M.V., Phillips C.P., Carracedo A. et al. Investigation of the STR locus HUMTH01 using PCR and two electrophoresis formats: UK and Galician Caucasian population surveys and usefulness in paternity investigations. Forensic science international. 1994;66(1):41-52.
42. Otaegui D., Ruiz-Martinez J., Olaskoaga J. et al. Influence of CCR5Delta32 genotype in Spanish population with multiple sclerosis. Neurogenetics. 2007;8(3):201-205.
43. Saiz P.A., Garcia-Portilla M.P., Arango C. et al. Genetic polymorphisms in the dopamine-2 receptor (DRD2), dopamine-3 receptor (DRD3), and dopamine transporter (SLC6A3) genes in schizophrenia: Data from an association study. Progress in neuropsychopharmacology & biological psychiatry. 2010;34(1):26-31.
44. Al Balwi M.A., Hadadi A.I., Alharbi W. et al. Analysis of CCR5 gene polymorphisms in 321 healthy Saudis using Next Generation Sequencing. Human immunology. 2017;78(4):384-386.
45. Al Obaidli A., Sabbagh A., Pravin S. et al. Present day inbreeding does not forbid the forensic utility of commonly explored STR loci: a case study of native Qataris. Forensic science international. Genetics. 2009;4(1):e11-e13.
46. Alfadhli S., Kharrat N.J., Al Tememy B. et al. Susceptible and protective endothelial nitric oxide synthase gene polymorphism in alopecia areata in the Kuwaiti population. Autoimmunity. 2008;41(7):522-525.
47. El Tarras A.E., Alsulaimani A.A., Awad N.S. et al. Association study between the dopamine-related candidate gene polymorphisms and ADHD among Saudi Arabia population via PCR technique. Molecular biology reports. 2012;39(12):11081-11086.
48. Habibullah M., Akter F., Qin X. et al. Association between Angiotensin-Converting EnzymeInsertion/Deletion Polymorphism and Diabetes Mellitus-2 in Saudi Population. Asian Pacific journal of cancer prevention: APJCP. 2021;22(1):119-123.
49. Devendran A., Nampoothiri S., Shewade D.G. et al. Allele, Genotype and Haplotype Structures of Functional Polymorphic Variants in Endothelial Nitric Oxide Synthase (eNOS), Angiotensinogen (ACE) and Aldosterone Synthase (CYP11B2) Genes in Healthy Pregnant Women of Indian Ethnicity. Journal of reproduction & infertility. 2015;16(4):180-192.
50. Gao Y., Zhang Z., Wang Z. et al. Genetic data of 15 STR forensic loci in eastern Chinese population. Forensic science international. 2005;154(1):78-80.
51. Li T., Yang L., Wiese C. et al. No association between alleles or genotypes at the dopamine transporter gene and schizophrenia. Psychiatry research. 1994;52(1):17-23.
52. Wang F.S., Hong W.G., Cao Y. et al. Population survey of CCR5 delta32, CCR5 m303, CCR2b 64I, and SDF1 3’A allele frequencies in indigenous Chinese healthy individuals, and in HIV-1-infected and HIV-1-uninfected individuals in HIV-1 risk groups. Journal of acquired immune deficiency syndromes. 2003;32(2):124-130.
53. Bhaskar L.V., Thangaraj K., Wasnik S. et al. Dopamine transporter (DAT1) VNTR polymorphism and alcoholism in two culturally different populations of south India. The American journal on addictions. 2012;21(4):343-347.
54. Gupta A., Padh H. Analysis of CCR5 and SDF-1 genetic variants and HIV infection in Indian population. International journal of immunogenetics. 2015;42(4):270-278.
55. Munshi A., Rajeshwar K., Kaul S. et al. VNTR polymorphism in intron 4 of the eNOS gene and the risk of ischemic stroke in a South Indian population. Brain research bulletin. 2010;82(5-6):247-250.
56. Panneerchelvam S., Vanaja N., Baskar D. et al. Distribution of alleles of 12 STR loci in Tamil population (south India). Forensic science international. 2001;119(1):126-128.
57. Banoei M.M., Chaleshtori M.H., Sanati M.H. et al. Variation of DAT1 VNTR alleles and genotypes among old ethnic groups in Mesopotamia to the Oxus region. Human biology. 2008;80(1): 7381.
58. Farbood Z., Sabeti A.A., Nejatizadeh A. et al. Endothelial Nitric Oxide Synthase Gene Polymorphisms (-922A>G, -786T>C, Intron 4 b/a VNTR and 894 G>T) and Essential Hypertension: An Association Study with Haplotypes Analysis. Biochemical genetics. 2020;58(4):518-532.
59. Ghorbani E., Mohammadi M., Malakouti S.K. et al. Association of ACE Gene Insertion/Deletion Polymorphism with Suicidal Attempt in an Iranian Population. Biochemical genetics. 2021;59(1):31-41.
60. Shepard E.M., Herrera R.J. Iranian STR variation at the fringes of biogeographical demarcation. Forensic science international. 2006;158(2-3):140-148.
61. Tajbakhsh A., Fazeli M., Rezaee M. et al. Prevalence of CCR5delta32 in Northeastern Iran. BMC medical genetics. 2019;20(1):184.
62. Liu H., Nakayama E.E., Theodorou I. et al. Polymorphisms in CCR5 chemokine receptor gene in Japan. International journal of immunogenetics. 2007;34(5):325-335.
63. Nakatome M., Honda K., Islam M.N. et al. Amplification of DAT1 (human dopamine transporter gene) 3’ variable region in the Japanese population. Human heredity. 1995;45(5):262-265.
64. Takahashi M., Kato Y., Miyakawa G. et al. Allele detection and population study in Japanese using two STR loci (CYP19 and HUMTH01). International journal of legal medicine. 1996;108(6):321-322.
65. Tobina T., Michishita R., Yamasawa F. et al. Association between the angiotensin I-converting enzyme gene insertion/ deletion polymorphism and endurance running speed in Japanese runners. The journal of physiological sciences: JPS. 2010;60(5): 325-330.
66. Cho N.S., Hwang J.H., Lee Y.A. et al. Population genetics of nine STR loci: TH01, TPOX, CSF1PO, vWA, FESFPS, F13A01, D13S317, D7S820 and D16S539 in a Korean population. Forensic science international. 2003;137(1):97-99.
67. Jeong S.H., Joo E.J., Ahn Y.M. et al. Association study of dopamine transporter gene and schizophrenia in Korean population using multiple single nucleotide polymorphism markers. Progress in neuro-psychopharmacology & biological psychiatry. 2004;28(6):975-983.
68. Jia Z., Zhang X., Kang S. et al. Association of endothelial nitric oxide synthase gene polymorphisms with type 2 diabetes mellitus: a metaanalysis. Endocrine journal. 2013;60(7):893-901.
69. Kang S.W., Han S.Y., Lim S.B. et al. ACE insertion/deletion polymorphism is associated with periodontal disease in Korean population. Archives of oral biology. 2015;60(3):496-500.
70. Oh M.D., Kim S.S., Kim E.Y. et al. The frequency of mutation in CCR5 gene among Koreans. International journal of STD & AIDS. 2000;11(4):266-267.
71. Choi E.J., Park K.W., Lee Y.H. et al. Forensic and population genetic analyses of the GlobalFiler STR loci in the Mongolian population. Genes & Genomics. 2017;39(4):423-431.
72. Gui-yan W., Yan-hua W., Qun X. et al. Associations between RAS Gene polymorphisms, environmental factors and hypertension in Mongolian people. European journal of epidemiology. 2006;21(4):287-292.
73. Qi G., Yin S., Zhang G. et al. Genetic and epigenetic polymorphisms of eNOS and CYP2D6 in mainland Chinese Tibetan, Mongolian, Uygur, and Han populations. The pharmacogenomics journal. 2020;20(1):114-125.
74. Alvi F.M., Hasnain S. ACE I/D and G2350A polymorphisms in Pakistani hypertensive population of Punjab. Clinical and experimental hypertension (New York, N.Y.: 1993). 2009;31(5): 471-480.
75. Ayub H., Khan M.I., Micheal S. et al. Association of eNOS and HSP70 gene polymorphisms with glaucoma in Pakistani cohorts. Molecular vision. 2010;16:18-25.
76. Qadeer M.I., Amar A., Mann J.J. et al. Polymorphisms in dopaminergic system genes; association with criminal behavior and self-reported aggression in violent prison inmates from Pakistan. PloS one. 2017;12(6):e0173571.
77. Rakha A., Yu B., Hadi S. et al. Population genetic data on 15 autosomal STRs in a Pakistani population sample. Legal medicine (Tokyo, Japan). 2009;11(6):305-307.
78. Aladag E., Tas Z., Ozdemir B.S. et al. Human Ace D/I Polymorphism Could Affect the Clinicobiological Course of COVID-19. Journal of the renin-angiotensin-aldosterone system: JRAAS. 2021;2021:5509280.
79. Degerli N., Yilmaz E., Bardakci F. The delta 32 allele distribution of the CCR5 gene and its relationship with certain cancers in a Turkish population. Clinical biochemistry. 2005;38(3):248-252.
80. Ozkan M., Gunay N., Sener E.F. et al. Variants in TNF and NOS3 (eNOS) genes associated with sepsis in adult patients. The journal of gene medicine. 2021;23(4):e3323.
81. Tokdemir M., Tuncez F.T., Vicdanli N.H. Population Genetic data for 15 Autosomal STR markers in Eastern Turkey. Gene. 2016;586(1):36-40.
82. Uzun M., Saglar E., Kucukyildirim S. et al. Association of VNTR polymorphisms in DRD4, 5-HTT and DAT1 genes with obesity. Archives of physiology and biochemistry. 2015;121(2):75-79.
83. Al Harbi E.M., Farid E.M., Gumaa K.A. et al. Genotypes and allele frequencies of angiotensin-converting enzyme (ACE) insertion/ deletion polymorphism among Bahraini population with type 2 diabetes mellitus and related diseases. Molecular and cellular biochemistry. 2012;362(1-2):219-223.
84. Kang A.M., Palmatier M.A., Kidd K.K. Global variation of a 40-bp VNTR in the 3’-untranslated region of the dopamine transporter gene (SLC6A3). Biological psychiatry. 1999;46(2):151-160.
85. Kowalski T.W., Fraga L.R., Tovo-Rodrigues L. et al. New Findings in eNOS gene and Thalidomide Embryopathy Suggest pretranscriptional effect variants as susceptibility factors. Scientific reports. 2016;6:23404.
86. Melo G., Uscanga K., Lopez-Armenta M. et al. Use of Investigator 24plex GO! To analyse allele frequencies of 21 autosomal STRs in the population of Veracruz state, Mexico. Annals of human biology. 2022;49(2):164-169.
87. Budowle B., Chidambaram A., Strickland L. et al. Population studies on three Native Alaska population groups using STR loci. Forensic science international. 2002;129(1):51-57.
88. Mendizabal-Ruiz A.P., Morales J., Castro M., X et al. RAS polymorphisms in cancerous and benign breast tissue. Journal of the renin-angiotensin-aldosterone system : JRAAS. 2011;12(2):85-92.
89. Tanus-Santos J.E., Desai M., Flockhart D.A. Effects of ethnicity on the distribution of clinically relevant endothelial nitric oxide variants. Pharmacogenetics. 2001;11(8):719-725.
90. Gamil S., Erdmann J., Abdalrahman I.B. et al. Association of NOS3 gene polymorphisms with essential hypertension in Sudanese patients: a case control study. BMC medical genetics. 2017;18(1):128.
91. Steinlechner M., Schmidt K., Kraft H.G. et al. Gabon black population data on the ten short tandem repeat loci D3S1358, VWA, D16S539, D2S1338, D8S1179, D21S11, D18S51, D19S433, TH01 and FGA. International journal of legal medicine. 2002;116(3):176178.
92. Sukhodol’skaia E.M., Vasil’ev V.A., Shibalev D.V. et al. The 3’-UTR polymorphism of dopamine transporter gene in hadza and datoga males. Mol. Boil. 2014;48(2):254-257.
93. Benjafield A.V., Morris B.J. Association analyses of endothelial nitric oxide synthase gene polymorphisms in essential hypertension. American journal of hypertension. 2000;13(9):994-998.
94. Duffy D.L., McDonald S.P., Hayhurst B. et al. Familial aggregation of albuminuria and arterial hypertension in an Aboriginal Australian community and the contribution of variants in ACE and TP53. BMC nephrology. 2016;17(1):183.
95. Gelernter J., Kranzler H., Lacobelle J. Population studies of polymorphisms at loci of neuropsychiatric interest (tryptophan hydroxylase (TPH), dopamine transporter protein (SLC6A3), D3 dopamine receptor (DRD3), apolipoprotein E (APOE), mu opioid receptor (OPRM1), and ciliary neurotrophic factor (CNTF)). Genomics. 1998;52(3):289-297.
96. Zini S. Vozniknovenie, formirovanie i dinamika razvitija ital’janskogo naselenija Kryma XIX-XXI vv. [The emergence, formation and dynamics of development of the Italian population of Crimea in the 19th-21st centuries]: diss. na soiskanie uchjonoj stepeni kand. ist. nauk: 033.03.02: zashhishhena 08.02.22: utv. 05.07.22. – M., 2022. – 184 P. (In Russ.)
97. Giannattasio S., Dianzani I., Lattanzio P. et al. Genetic heterogeneity in five Italian regions: analysis of PAH mutations and minihaplotypes. Human heredity. 2001;52(3):154-159.
98. Tofanelli S., Taglioli L., Varesi L. et al. Genetic history of the population of Corsica (western Mediterranean) as inferred from autosomal STR analysis. Human biology. 2004;76(2):229-251.
99. Zagorovskij E. A. Otnoshenie Rossii i Italii v XIX veke / Zagorovskij E. A. Zapiski imperatorskogo odesskogo obshhestva istorii i drevnostej. [ The relationship between Russia and Italy in the 19th century / Zagorovsky E. A. Notes of the Imperial Odessa Society of History and Antiquities]. 1919; 33: 41-58. (In Russ.)
100. GKU RK. F. 27. Op. 7. Tom 1. L. 1-37. (Arhivnaja inventarizacija. Tavricheskoe Gubernskoe pravlenie. Dela 3-ogo i 5-ogo stola inostranno-poddannyh. Gody 1831-1860). [GKU RK. F. 27. Op. 7. Volume 1. L. 1-37. (Archival inventory. Tauride Provincial Government. Affairs of the 3rd and 5th tables of foreign subjects. Years 1831-1860)] (In Russ.)
101. GKU RK. F. 27. Op. 7. Tom 2. L. 1-169. (Arhivnaja inventarizacija. Tavricheskoe Gu bernskoe pravlenie. Dela 3-ogo i 5-ogo stola inostranno-poddannyh. Gody 1860-1902) [GKU RK. F. 27. Op. 7. Volume 2. L. 1-169. (Archival inventory. Tauride Gubernian government. Affairs of the 3rd and 5th table of foreign subjects. Years 1860-1902)]. (In Russ.)
102. GKU RK. F. 27. Op. 7. Tom 3. L. 1-196. (Arhivnaja inventarizacija. Tavricheskoe Gubernskoe pravlenie. Dela 3-ogo i 5-ogo stola inostranno-poddannyh. Gody 1902-1914) [GKU RK. F. 27. Op. 7. Volume 3. L. 1-196. (Archival inventory. Tauride Provincial Government. Affairs of the 3rd and 5th tables of foreign subjects. Years 1902-1914)]. (In Russ.)
103. GKU RK. F. 27. Op. 7. Tom 4. L. 1-83. (Arhivnaja inventarizacija. Tavricheskoe Gubernskoe pravlenie. Dela 3-ogo i 5-ogo stola inostranno-poddannyh. God 1914). [GKU RK. F. 27. Op. 7. Volume 4. L. 1-83. (Archival inventory. Tauride Provincial Government. Affairs of the 3rd and 5th tables of foreign subjects. Year 1914).]. (In Russ.)
104. Holeva I., Nikolich A., Pfaf V., Pomerancev D. Ob#javlenija Kerch’Enikal’skogo gradonachal’stva. Policejskij listok. Oficial’naja gazeta Kerch’-Enikal’skogo gradonachal’stva. Kerch’: 5-go janvarja 1858 g. – 28-go dekabrja 1858 g. [Announcements of the KerchYenikalsky city administration. Police leaflet. Official newspaper of the Kerch-Yenikalsk city administration. Kerch: January 5, 1858 – December 28, 1858] (In Russ.)
105. Zini S., Khohlov N.V. Analiz familij predstavitelej sovremennoj jetnicheskoj gruppy ital’jancev Kryma i ih predkov v kachestve kvazigeneticheskih markerov.[ An analysis of the surnames of the members of the modern ethnic group of italians of Crimea and their ancestors as quasi-genetic marke].Vestnik antropologii.[ Herald of Anthropology] 2023; 2:308-324. (In Russ.)
Review
For citations:
Makarov S.V., Balinova N.V., Zini S., Khokhlov N.V., Bychkovskaya L.S., Spitsyna N. N.Kh. Study of nuclear genome polymorphism of the modern group of Italians of Crimea. Medical Genetics. 2023;22(10):48-62. (In Russ.) https://doi.org/10.25557/2073-7998.2023.10.48-62