Guidelines of the Russian Society of Medical Geneticists for Chromosomal Microarray Analysis
https://doi.org/10.25557/2073-7998.2023.10.3-47
Abstract
Chromosomal microarray analysis is the state-of-the-art of clinical cytogenetics, providing efficient and high-resolution diagnostics of unbalanced chromosomal rearrangements. Current recommendations define the indications for chromosomal microarray analysis in postnatal and prenatal diagnostics of constitutive chromosomal anomalies. Approaches to interpretation of the clinical significance of detected chromosomal variants, as well as genetic counseling for families of patients with chromosomal diseases are discussed. Emphasis is given to the priority of expert opinion and collaboration between molecular cytogeneticist and clinical geneticist in assessing the pathogenetic significance of chromosomal variants and the strategy for subsequent laboratory examination of the patient.
Keywords
About the Authors
I. N. LebedevRussian Federation
10, Naberejnaya Ushaiki, Tomsk, 634050
N. V. Shilova
Russian Federation
1, Moskvorechie st., Moscow, 115522
I. Yu. Iourov
Russian Federation
34, Kashirskoe shosse, Moscow, 115522
2 Taldomskaya st., Moscow, 125412
O. V. Malysheva
Russian Federation
3, Mendeleevskaya line, Saint Petersburg, 199034
A. A. Tveleneva
Russian Federation
3, bldg.1, Gubkina st., Moscow, 119333
M. E. Minzhenkova
Russian Federation
1, Moskvorechie st., Moscow, 115522
Zh. G. Markova
Russian Federation
1, Moskvorechie st., Moscow, 115522
E. N. Tolmacheva
Russian Federation
10, Naberejnaya Ushaiki, Tomsk, 634050
A. A. Kashevarova
Russian Federation
10, Naberejnaya Ushaiki, Tomsk, 634050
References
1. Miller D.T., Adam M.P., Aradhya S. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749-764.
2. Bi W., Borgan C., Pursley A. et al. Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosomal analysis in today’s genomic array era? Genetics in Medicine. 2013;15:450-457.
3. Kallioniemi A., Kallioniemi O.P., Sudar D. et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258(5083):818-821.
4. Vermeesch J.R., Melotte C., Froyen G. et al. Molecular karyotyping: Array CGH quality criteria for constitutional genetic diagnosis. J Histochem Cytochem. 2005;53(3):413-422.
5. Bélanger S.A., Caron J. Evaluation of the child with global developmental delay and intellectual disability. Pediatr. Child Heal. 2018;23(6):403-410.
6. Jang W., Kim Y., Han E. et al. Chromosomal microarray analysis as a first-tier clinical diagnostic test in patients with developmental delay/ intellectual disability, autism spectrum disorders, and multiple congenital anomalies: a prospective multicenter study in Korea. Ann Lab Med. 2019;39(3):299-310.
7. Koolen D.A., de Vries B.B.A. Newly recognized mental retardation microdeletion/duplication syndromes. Monogr Hum Genet. Basel, Karger, 2010;18:101-113.
8. Vissers E.L.M.L., Stankiewicz P. Microdeletion and microduplication syndromes. Lars Feuk (ed.). Genomic Structural Variants: Methods and Protocols. Methods Mol Biol. 2012;238:29-75.
9. Nevado J., Mergener R., Palomares-Bralo M. et al. New microdeletion and microduplication syndromes: A comprehensive review. Genet Mol Biol. 2014;37(1 suppl):210-219.
10. Goldenberg P. An update on common chromosome microdeletion an d micro duplication syn drom es. Pediatr Ann. 2018;47(5):e198-e203.
11. Manning M., Hudgins L., Professional Practice and Guidelines Committee. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med. 2010;12(11):742-745.
12. Kearney H.M., South S.T., Wolff D.J. et al., American College of Medical Genetics recommendations for the design and performance expectations for clinical genomic copy number microarrays intended for use in the postnatal setting for detection of constitutional abnormalities. Genet Med. 2011;13(7):676-679.
13. Kearney H.M., Thorland E.C., Brown K.K. et al. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med. 2011;13(7):680-685.
14. Hastings R., Howell R., Bricarelli F.D. et al. Specific constitutional cytogenetic guidelines. A common European framework for quality assessment for constitutional, acquired and molecular cytogenetic investigations. European Cytogeneticists Association Newsletter. No 30. Jul 2012: 11-19.
15. South S.T., Lee C., Lamb A.N. et al. ACMG Standards and Guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013. Genet Med. 2013;15(11):901-909.
16. American College of Obstetricians and Gynecologists Committee on Genetics. Committee Opinion No. 446: Array comparative genomic hybridization in prenatal diagnosis. Obstet Gynecol. 2009;114(5):1161-1163.
17. American College of Obstetricians and Gynecologists Committee on Genetics. Committee Opinion No 581: The use of chromosomal microarray analysis in prenatal diagnosis. Obstet Gynecol. 2013;122(6):1374-1377.
18. Committee on Genetics and the Society for Maternal-Fetal Medicine. Committee Opinion No 682: Microarrays and next-generation sequencing technology: the use of advanced genetic diagnostic tools in obstetrics and gynecology. Obstet Gynecol. 2016;128(6):e262-e268.
19. Silva M., de Leeuw N., Mann K. et al. European guidelines for constitutional cytogenomic analysis. Eur J Hum Genet. 2019;27(1):1-16.
20. Riggs E.R., Andersen E.F., Cherry A.M. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020;22(2):245-257.
21. Brandt T., Sack L.M., Arjona D. et al. Adapting ACMG/AMP sequence variant classification guidelines for single-gene copy number variants. Genet Med. 2020;22(2):336-344.
22. Gonzales P.R., Andersen E.F., Brown T.R. et al. Interpretation and reporting of large regions of homozygosity and suspected consanguinity/uniparental disomy, 2021 revision: A technical standard of the American Colleague of Medical Genetics and Genomics (ACMG). Genet. Med. 2022;24(2):255-261.
23. Deans Z.C., Ahn J.W., Carreira I.M. et al. Recommendations for reporting results of diagnostic genomic testing. Eur J Hum Genet. 2022;30(9):1011-1016.
24. Levy B., Wapner R. Prenatal diagnosis by chromosomal microarray analysis. Fertil Steril. 2018;109(2):201-212.
25. Wapner R.J., Martin C.L., Levy B. et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med. 2012;367(23):2175-2184.
26. Shaffer L.G., Dabell M.P., Fisher A.J. et al. Experience with microarray-based comparative genomic hybridization for prenatal diagnosis in over 5000 pregnancies. Prenat Diagn. 2012; 32(10):976-985.
27. Srebniak M.I., Diderich K.E., Joosten M. et al. Prenatal SNP array testing in 1000 fetuses with ultrasound anomalies: causative, unexpected and susceptibility CNVs. Eur J Hum Genet. 2016; 24(5);645-651.
28. Donnelly J.C., Platt L.D,. Rebarber A. et al. Association of copy number variants with specific ultrasonographically detected fetal anomalies. Obstet Gynecol. 2014;124(1):83-90.
29. Greenbaum L., Maya I., Sagi-Dain L. et al. Chromosomal microarray analysis in pregnancies with corpus callosum and posterior fossa anomalies. Neurol Genet. 2021;7(3):e585.
30. Hilger A.C., Dworschak G.C., Reutter H.M. Lessons learned from CNV analysis of major birth defects. Int J Mol Sci. 2020;21(21):8247.
31. Mastromoro G., Guadagnolo D., Khaleghi Hashemian N. et al. Molecular approaches in fetal malformations, dynamic anomalies and soft markers: diagnostic rates and challenges – systematic review of the literature and meta-analysis. Diagnostics (Basel). 2022;12(3):575.
32. Lebedev I.N., Karamysheva T.V., Elisaphenko E.A. et al. Prenatal diagnosis of small supernumerary marker chromosome 10 by array-based comparative genomic hybridization and microdissected chromosome sequencing. Biomedicines. 2021;9(8):1030.
33. Peng G., Zhou Q., Chai H. et al. Estimation on risk of spontaneous abortions by genomic disorders from a meta-analysis of microarray results on large series of pregnancy losses. Mol Genet Genomic Med. 2023;11(8):e2181.
34. Handyside A.H., Harton G.L., Mariani B. et al. Karyomapping: a universal method for genome wide analysis of genetic diseases based on mapping crossovers between parental haplotypes. J Med Genet. 2010;47(10):651-8.
35. Zamani Esteki M., Dimitriadou E., Mateiu L. et al. Concurrent whole-genome haplotyping and copy-number profiling of single cells. Am J Hum Genet. 2015;96(6):894-912.
36. Stuppia L., Antonucci I., Palka G., Gatta V. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int J Mol Sci. 2012;13(3):3245-76.
37. Kashevarova A.A., Lopatkina M.E., Belyaeva E.O., et al. Rasprostranennost’ i spektr monogennykh CNV u patsiyentov s narusheniyami intellektual’nogo razvitiya [Prevalence and spectrum of single-gene CNVs in patients with intellectual disability]. Meditsinskaya genetika [Medical Genetics]. 2021;20(10):44-46. (In Russ.)
38. An International System for Human Cytogenomic Nomenclature (2020) Ed. McGovan-Jordan J., Hastings R.J., Moore S. Karger. 2020. Reprint from Cytogenet Genome Res. 2020;160:341-503.
39. Scott S.A., Cohen N., Brandt T. et al. Detection of low-level mosaicism and placental mosaicism by oligonucleotide array comparative genomic hybridization. Genet Med. 2010;12(2):85-92.
40. Pham J., Shaw C., Pursley A. et al. Somatic mosaicism detected by exon-targeted, high-resolution aCGH in 10,362 consecutive cases. Eur J Hum Genet. 2014;22(8):969-978.
41. Happe S., Shen X., Truong N., Maran V., Agilent Technologies, Inc. High-Performance aberration detection from low DNA input and mosaic samples with the Agilent SureTag Labeling Kit and CGH Microarray. https://www.agilent.com/cs/library/applications/application-low-dna-input-mosaic-samples-surtag-cgh-microarrays-59942722en-agilent.pdf?elqTrackId=58f21e7c88344aa2829f4bf886ca3a94&elqaid=4951&elqat=2
42. Nurk S., Koren S., Rhie A. et al. A complete sequence of a human genome. Science. 2022;376(6588):44-53.
43. Collins R.L., Glessner J.T., Porcu E. et al. A cross-disorder dosage sensitivity map of the human genome. Cell. 2022;185(16):3041-3055.e25.
44. Adam M.P., Justice A.N., Schelley S. et al. Clinical utility of array comparative genomic hybridization: uncovering tumor susceptibility in individuals with developmental delay. J Pediatr. 2009;154(1):143-146.
45. Vogt P.H. Genomic heterogeneity and instability of the AZF locus on the human Y chromosome. Mol Cell Endocrinol. 2004;224(1-2):1-9.
46. Boone P.M., Soens Z.T., Campbell I.M. et al. Incidental copy-number variants identified by routine genome testing in a clinical population. Genet Med. 2013;15(1):45-54.
47. Kalia S.S., Adelman K., Bale S.J. et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249-255.
48. Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation on the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424.
49. Newman S., Hermetz K.E., Weckselblatt B., Rudd M.K. Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints. Am J Hum Genet. 2015;96:208–220.
50. Richardson M.E., Chong H., Mu W. et al. DNA breakpoint assay reveals a majority of gross duplications occur in tandem reducing VUS classifications in breast cancer predisposition genes. Genet Med. 2018;21:683–693.
51. MacDonald J.R., Ziman R., Yuen R.K. et al. The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 2014;42(D1):D986–92.
52. Juan-Mateau J., Gonzalez-Quereda L., Rodriquez M.J. et al. DMD mutations in 576 dystrophinopathy families: a step forward in genotype-phenotype correlations. PLoS One. 2015;10:e0135189.
53. Gijsbers A.C., Schoumans J., Ruivenkamp .. Interpretation of array comparative genome hybridization data: a major challenge. Cytogenet Genome Res. 2011;135(3-4):222-227.
54. Iourov I.Y., Vorsanova S.G., Korostelev S.A. et al. Long contiguous stretches of homozygosity spanning shortly the imprinted loci are associated with intellectual disability, autism and/or epilepsy. Mol Cytogenet. 2015;8:77.
55. Kurinnaia O.S., Vasin K.S., Zelenova M.A. et al. Outcomes of ROHs (runs of homozygosity)/LCSHs (long contiguous stretches of homozygosity) spanning the imprinted loci of chromosomes 7, 11 and 15 among children with neurodevelopmental disorders. Res Results Biomed. 2023;9(3):312-321.
56. Shilova N.V., Minzhenkova M.E. Interpretatsiya klinicheski znachimykh variatsiy chisla kopiy DNK [Interpretation of pathogenic copy number variations]. Meditsinskaya genetika [Medical Genetics]. 2018;17(10):15-19. (In Russ.).
57. Minzhenkova M.E., Antonenko V.G., Shilova N.V. Mezhdunarodnaya sistema tsitogenomnoy nomenklatury cheloveka (ISCN 2020): Dopolneniya i izmeneniya zapisi rezul’tatov fluorestsentnoy in situ gibridizatsii i khromosomnogo mikromatrichnogo analiza pri konstitutivnykh narusheniyakh [International System for Human Cytogenomic Nomenclature (ISCN 2020): Additions and modifications in recording the results of fluorescenсе in situ hybridization and chromosomal microarray analysis in constitutional cytogenetics]. Meditsinskaya genetika [Medical Genetics]. 2023;22(4):11-16. (In Russ.)
Review
For citations:
Lebedev I.N., Shilova N.V., Iourov I.Yu., Malysheva O.V., Tveleneva A.A., Minzhenkova M.E., Markova Zh.G., Tolmacheva E.N., Kashevarova A.A. Guidelines of the Russian Society of Medical Geneticists for Chromosomal Microarray Analysis. Medical Genetics. 2023;22(10):3-47. (In Russ.) https://doi.org/10.25557/2073-7998.2023.10.3-47