Preview

Медицинская генетика

Расширенный поиск

Анализ гена SLC26A4 и его генетического окружения у пациентов с нарушениями слуха и расширенным водопроводом преддверия в Бурятии

https://doi.org/10.25557/2073-7998.2023.07.51-60

Аннотация

Патогенные варианты гена SLC26A4 ассоциированы как с аутосомно-рецессивной глухотой 4 типа (DFNB4, OMIM #600791), так и с синдромом Пендреда (PS, OMIM #274600). В настоящей работе проведен поиск каузативных вариантов гена SLC26A4 и анализ его генетического окружения (гаплотип CEVA) у шести пациентов из Бурятии с нарушениями слуха и расширенным водопроводом преддверия (EVA), которые в части случаев были сочетаны с кистозными аномалиями улитки (IP-1 и IP-2) и с нарушением тиреоидной функции. Исследование включало клинико-аудиологический анализ порогов слуха, компьютерную томографию височных костей, анализ гормонов гипофизарно-тиреоидной системы (ТТГ, св.Т3 и св.Т4), прямое секвенирование по Сэнгеру кодирующих районов гена SLC26A4 (21 экзон) и генотипирование 12 SNP-маркеров, составляющих гаплотип CEVA. Вцелом, уобследованных пациентов доля SLC26A4 биаллельных (M2) и моноаллельных случаев в сочетании с CEVA-гаплотипом в транс-положении (M1+CEVA) составила 83,3% (5 из 6 пациентов). При этом, у пациентов бурятов доля случаев с M2 составила 100% (3 из 3 пациентов), в то время как у русских пациентов доля случаев с М2 и М1+CEVA составила 66,6% (2 из 3 пациентов). Высокий мутационный вклад гена SLC26A4 у пациентов бурятов может быть связан с распространенностью в регионе озера Байкал мажорных вариантов этого гена c.919-2A>G (IVS7-2A>G) и c.2027T>A p.(Leu676Gln), характерных для ряда регионов Сибири и Восточной Азии. Идентификация гаплотипа CEVA в транс-положении у одного русского пациента с моноаллельным вариантом гена SLC26A4 (М1+CEVA), свидетельствует об актуальности дальнейшей оценки диагностической значимости CEVA-гаплотипа в когортах российских пациентов с нарушениями слуха.

Об авторах

А. М. Чердонова
ФГАОУ ВО «Северо-Восточный федеральный университет им. М.К. Аммосова»
Россия

677000, г.Якутск, ул. Белинского, д. 58



Т. В. Борисова
ФГБНУ «Якутский научный центр комплексных медицинских проблем»
Россия

677000, г. Якутск, ул. Ярославского, д. 6/3



В. Г. Пшенникова
ФГБНУ «Якутский научный центр комплексных медицинских проблем»
Россия

677000, г. Якутск, ул. Ярославского, д. 6/3



Ф. М. Терютин
ФГБНУ «Якутский научный центр комплексных медицинских проблем»
Россия

677000, г. Якутск, ул. Ярославского, д. 6/3



Л. А. Кларов
ФГБНУ «Якутский научный центр комплексных медицинских проблем»
Россия

677000, г. Якутск, ул. Ярославского, д. 6/3



А. А. Никанорова
ФГБНУ «Якутский научный центр комплексных медицинских проблем»
Россия

677000, г. Якутск, ул. Ярославского, д. 6/3



Г. П. Романов
ФГАОУ ВО «Северо-Восточный федеральный университет им. М.К. Аммосова»
Россия

677000, г.Якутск, ул. Белинского, д. 58



А. В. Соловьев
ФГАОУ ВО «Северо-Восточный федеральный университет им. М.К. Аммосова»
Россия

677000, г.Якутск, ул. Белинского, д. 58



С. А. Федорова
ФГАОУ ВО «Северо-Восточный федеральный университет им. М.К. Аммосова»
Россия

677000, г.Якутск, ул. Белинского, д. 58



Н. А. Барашков
ФГБНУ «Якутский научный центр комплексных медицинских проблем»
Россия

677000, г. Якутск, ул. Ярославского, д. 6/3



Список литературы

1. Baldwin C.t., Weiss S., Farrer L.A., et al. Linkage of congenital, recessive deafness (DFNB4) to chromosome 7q31 and evidence for genetic heterogeneity in the Middle Eastern Druze population. Hum. Mol. Genet. 1995; 4: 1637–1642. https://doi.org/10.1093/hmg/4.9.1637.

2. Everett L.A., Glaser B., Beck J.C., et al. Pendred Syndrome Is Caused by Pathogenic variants in a Putative Sulphate transporter Gene (PDS). Nat. Genet. 1997; 17: 411–422. https://doi.org/10.1038/ng1297-411.

3. Abe S., Usami S., Hoover D.M., et al. Fluctuating sensorineural hearing loss associated with enlarged vestibular aqueduct maps to 7q31, the region containing the Pendred gene. Am. J. Med. Genet. 1999; 82: 322–328.

4. Li X.C., Everett L.A., Lalwani A.K., et al. A pathogenic variant in PDS causes non-syndromic recessive deafness. Nat. Genet. 1998; 18: 215–217. https://doi.org/10.1038/ng0398-215.

5. Usami S., Abe S., Weston M.D., et al. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS pathogenic variants. Hum. Genet. 1999; 104: 188–192. doi: 10.1007/s004390050933.

6. Campbell C., Cucci R.A., Prasad S., et al. Pendred syndrome, DFNB4, and PDS/SLC26A4 identification of eight novel pathogenic variants and possible genotype-phenotype correlations. Hum. Mutat. 2001; 17: 403–411. https://doi.org/10.1002/humu.1116.

7. Valvassori G.E., Clemis J.D. the large vestibular aqueduct syndrome. Laryngoscope 1978; 88: 723–728. https://doi.org/10.1002/lary.1978.88.5.723.

8. Jackler R.K., Luxford W.M., House W.F. Congenital Malformations of the Inner Ear: A Classification Based on Embryogenesis. Laryngoscope 1987; 97: 2–14. https://doi.org/10.1002/lary.5540971301.

9. Sennaroglu L., Saatci I. A New Classification for Cochleovestibular Malformations. Laryngoscope 2002; 112: 2230–2241. https://doi.org/10.1097/00005537-200212000-00019.

10. Sennaroğlu L., Bajin M.D. Classification and Current Management of Inner Ear Malformations. Balkan Med. J. 2017; 34: 397–411. https://doi.org/10.4274/balkanmedj.2017.0367.

11. Pendred V. Deaf-mutism and goitre. The Lancet. 1896; 148: 532. https://doi.org/10.1016/S0140-6736(01)74403-0

12. Fraser G.R. Association of congenital deafness with goitre (pendred’s syndrome): a study of 207 families. Ann. Hum. Genet. 1965; 28: 201– 249. https://doi.org/10.1111/j.1469-1809.1964.tb00479.x

13. Royaux I.E., Suzuki K., Mori A., et al. Pendrin, the Protein Encoded by the Pendred Syndrome Gene (PDS), Is an Apical Porter of Iodide in the thyroid and Is Regulated by thyroglobulin in FRtL-5 Cells. Endocrinology. 2000; 141: 839–845. https://doi.org/10.1210/endo.141.2.7303.

14. Royaux I.E., Wall S.M., Karniski L.P., et al. Pendrin, Encoded by the Pendred Syndrome Gene, Resides in the Apical Region of Renal Intercalated Cells and Mediates Bicarbonate Secretion. Proc. Natl. Acad. Sci. USA 2001; 98: 4221–4226. https://doi.org/10.1073/pnas.071516798.

15. Scott D.A., Wang R., Kreman t.M., et al. the Pendred Syndrome Gene Encodes a Chloride-Iodide transport Protein. Nat. Genet. 1999; 21: 440–443. https://doi.org/10.1038/7783.

16. Scott D.A., Karniski L.P. Human Pendrin Expressed in Xenopus Laevis Oocytes Mediates Chloride/Formate Exchange. Am. J. Physiol. Cell Physiol. 2000; 278: 207–211. https://doi.org/10.1152/ajpcell.2000.278.1.C207.

17. Soleimani M. Molecular physiology of the renal chloride-formate exchanger. Curr. Opin. Nephrol. Hypertens. 2001; 10: 677–683. https://doi.org/10.1097/00041552-200109000-00020.

18. Pedemonte N., Caci E., Sondo E., et al. thiocyanate transport in resting and IL-4-stimulated human bronchial epithelial cells: role of pendrin and anion channels. J Immunol 2007; 178: 5144– 5153. https://doi.org/10.4049/jimmunol.178.8.5144

19. Dossena S., Bernardinelli E., Sharma A.K., et al. the Pendrin Polypeptide. In the Role of Pendrin in Health and Disease. Springer: Cham. 2017; 187–220. https://doi.org/10.1007/978-3-319-43287-8_11.

20. Циркин В.И., Трухина С.И., Трухин А.Н. Нейрофизиология: физиология сенсорных систем: учебник для вузов. Москва: Издательство Юрайт, 2020: 459 с.

21. Wangemann P. the role of pendrin in the development of the murine inner ear. Cell Physiol Biochem 2011; 28: 527–534. https://doi.org/10.1159/000335113

22. Griffith A.J., Wangemann P. Hearing loss associated with enlargement of the vestibular aqueduct: mechanistic insights from clinical phenotypes, genotypes, and mouse models. Hear Res 2011; 281: 11– 17. https://doi.org/10.1016/j.heares.2011.05.009

23. Park H.-J., Shaukat S., Liu X.-Z., et al. Origins and Frequencies of SLC26A4 (PDS) Pathogenic variants in East and South Asians: Global Implications for the Epidemiology of Deafness. J. Med. Genet. 2003; 40: 242–248. https://doi.org/10.1136/jmg.40.4.242.

24. tsukamoto K., Suzuki H., Harada D. et al. Distribution and frequencies of PDS (SLC26A4) pathogenic variants in Pendred Syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: A unique spectrum of pathogenic variants in Japanese. Eur. J. Hum. Genet. 2003; 11: 916–922. https://doi.org/10.1038/sj.ejhg.5201073.

25. Blons H., Feldmann D., Duval V., et al. Screening of SLC26A4 (PDS) gene in Pendred’s syndrome: A large spectrum of pathogenic variants in France and phenotypic heterogeneity. Clin. Genet. 2004; 66: 333–340. https://doi.org/10.1111/j.1399-0004.2004.00296.x.

26. Hutchin t., Coy N.N., Conlon H., et al. Assessment of the genetic causes of recessive childhood non-syndromic deafness in the UK— Implications for genetic testing. Clin. Genet. 2005; 68: 506–512. doi: 10.1111/j.1399-0004.2005.00539.x.

27. Pryor S.P., Demmler G.J., Madeo A.C., et al. Investigation of the Role of Congenital Cytomegalovirus Infection in the Etiology of Enlarged Vestibular Aqueducts. Arch. Otolaryngol. Head Neck Surg. 2005; 131: 388–392. https://doi.org/10.1001/archotol.131.5.388.

28. Albert S., Blons H., Jonard L., et al. SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. Eur. J. Hum. Genet. 2006; 14: 773–779. doi: 10.1038/sj.ejhg.5201611.

29. Guo Y.F., Liu X.W., Guan J., et al. GJB2, SLC26A4 and mitochondrial DNA A1555G pathogenic variants in prelingual deafness in Northern Chinese subjects. Acta Otolaryngol. 2008; 128: 297–303. doi: 10.1080/00016480701767382.

30. Pourová R., Janousek P., Jurovcík M., et al. Spectrum and frequency of SLC26A4 pathogenic variants among Czech patients with early hearing loss with and without Enlarged Vestibular Aqueduct (EVA). Ann. Hum. Genet. 2010 ; 74: 299–307. doi: 10.1111/j.1469-1809.2010.00581.x.

31. Pang X., Chai Y., Chen P., et al. Mono-allelic pathogenic variants of SLC26A4 is over-presented in deaf patients with non-syndromic enlarged vestibular aqueduct. Int. J. Pediatr. Otorhinolaryngol. 2015; 79: 1351–1353. doi: 10.1016/j.ijporl.2015.06.009.

32. Chai Y., Huang Z., tao Z., et al. Molecular etiology of hearing impairment associated with nonsyndromic enlarged vestibular aqueduct in East China. Am. J. Med. Genet. Part A 2013; 161: 2226–2233. doi: 10.1002/ajmg.a.36068.

33. Miyagawa M., Nishio S.Y., Usami S. Deafness Gene Study Consortium. Pathogenic variant spectrum and genotype-phenotype correlation of hearing loss patients caused by SLC26A4 pathogenic variants in the Japanese: A large cohort study. J. Hum. Genet. 2014; 5: 262– 268. https://doi.org/10.1038/jhg.2014.12.

34. Wu C.C., Yeh t.H., Chen P.J., et al. Prevalent SLC26A4 mutations in patients with enlarged vestibular aqueduct and/or Mondini dysplasia: a unique spectrum of mutations in taiwan, including a frequent founder mutation. Laryngoscope. 2005; 115: 1060-1064. doi: 10.1097/01.MLG.0000163339.61909.D0.

35. tsukada K., Nishio S.Y., Hattori M., et al. Ethnic-specific spectrum of GJB2 and SLC26A4 pathogenic variants: their origin and a literature review. Ann. Otol. Rhinol. Laryngol. 2015; 124 (Suppl. 1): 61–76. https://doi.org/10.1177/0003489415575060.

36. Erdenechuluun J., Lin Y.-H., Ganbat K., et al. Unique spectra of deafness-associated pathogenic variants in Mongolians provide in-sights into the genetic relationships among Eurasian populations. PLoS ONE. 2018; 13: e0209797. doi: 10.1371/journal.pone.0209797.

37. Xiang Y.B., tang S.H., Li H.Z., et al. Pathogenic variant analysis of common deafness-causing genes among 506 patients with nonsyndromic hearing loss from Wenzhou city, China. Int. J. Pediatr. Otorhinolaryngol. 2019; 122: 185–190. doi: 10.1016/j.ijporl.2019.04.024.

38. Koohiyan M. A systematic review of SLC26A4 pathogenic variants causing hearing loss in the Iranian population. Int. J. Pediatr. Otorhinolaryngol. 2019; 125: 1–5. doi: 10.1016/j.ijporl.2019.06.012.

39. Han J.J., Nguyen P.D., Oh D.Y., et al. Elucidation of the unique pathogenic variant spectrum of severe hearing loss in a Vietnamese pediatric population. Sci. Rep. 2019; 9(1): 1604. doi: 10.1038/s41598-018-38245-4.

40. Zhang M., Han Y., Zhang F., et al. Pathogenic variant spectrum and hotspots of the common deafness genes in 314 patients with nonsyndromic hearing loss in Heze area, China. Acta Otolaryngol. 2019; 139: 612–617. doi: 10.1080/00016489.2019.1609699.

41. tian Y., Xu H., Liu D., et al. Increased diagnosis of enlarged vestibular aqueduct by multiplex PCR enrichment and next-generation sequencing of the SLC26A4 gene. Mol. Genet. Genom. Med. 2021; 9 (8): e1734. doi: 10.1002/mgg3.1734.

42. Roesch S., Rasp G., Sarikas A., et al. Genetic Determinants of Non-Syndromic Enlarged Vestibular Aqueduct: A Review. Audiol. Res. 2021; 11(3): 423-442. doi: 10.3390/audiolres11030040.

43. Honda K., Griffith A.J. Genetic architecture and phenotypic landscape of SLC26A4-related hearing loss. Hum. Genet. 2022; 141(3-4): 455-464. https://doi.org/10.1007/s00439-021-02311-1.

44. Yang t., Vidarsson H., Rodrigo-Blomqvist S., et al. transcriptional control of SLC26A4 is involved in Pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). Am J. Hum. Genet. 2007: 80: 1055–1063. https://doi.org/10.1086/518314.

45. Yang t., Gurrola J.G., Wu H., et al. Pathogenic variants of KCNJ10 together with pathogenic variants of SLC26A4 cause digenic nonsyndromic hearing loss associated with enlarged vestibular aqueduct syndrome. Am. J. Hum. Genet. 2009; 84(5): 651–657. doi: 10.1016/j.ajhg.2009.04.014.

46. Wu C.C., Lu Y.C., Chen P.J., et al. Phenotypic analyses and pathogenic variant screening of the SLC26A4 and FOXI1 genes in 101 taiwanese families with bilateral nonsyndromic enlarged vestibular aqueduct (DFNB4) or Pendred syndrome. Audiol. Neurootol. 2010; 15: 57–66. https://doi.org/10.1159/000231567.

47. Chen K., Wang X., Sun L., et al. Screening of SLC26A4, FOXI1, KCNJ10, and GJB2 in bilateral deafness patients with inner ear malformation. Otolaryngol. Head Neck Surg. 2012; 146: 972–978. https://doi.org/10.1177/0194599812439670.

48. Pique L.M., Brennan M., Davidson C.J., et al. Pathogenic variant analysis of the SLC26A4, FOXI1 and KCNJ10 genes in individuals with congenital hearing loss. PeerJ 2014; 2: e384. https://doi.org/10.7717/peerj.384.

49. Landa P., Differ A.-M., Rajput K., et al. Lack of significant association between mutations of KCNJ10 or FOXI1 and SLC26A4 mutations in pendred syndrome/enlarged vestibular aqueducts. BMC Med Genet. 2013; 14: 85. https://doi.org/10.1186/1471-2350-14-85

50. Klarov L.A., Pshennikova V.G.., Romanov G.P., et al. Analysis of SLC26A4, FOXI1, and KCNJ10 Gene Variants in Patients with Incomplete Partition of the Cochlea and Enlarged Vestibular Aqueduct (EVA) Anomalies. International Journal of Molecular Sciences. 2022; 23(23): 15372. https://doi.org/10.3390/ijms232315372

51. Danilchenko V.Y., Zytsar M.V., Maslova E.A., et al. Insight into the Natural History of Pathogenic Variant c.919-2A>G in the SLC26A4 Gene Involved in Hearing Loss: the Evidence for Its Common Or igin in Southern Siberia (Russia). Genes. 2023, 14: 928. https://doi.org/10.3390/genes14040928

52. Li M., Nishio S.-Y., Naruse C., et al. Digenic inheritance of mutations in EPHA2 and SLC26A4 in Pendred syndrome. Nat. Commun. 2020; 11: 1343. https://doi.org/10.1038/s41467-020-15198-9

53. Pryor S.P., Madeo A.C., Reynolds J.C., et al. SLC26A4/PDS genotype-phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA): evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetic entities. J Med Genet 2005; 42: 159–165. https://doi.org/10.1136/jmg.2004.024208

54. Azaiez H., Yang t., Prasad S., et al. Genotype-phenotype correlations for SLC26A4-related deafness. Hum Genet. 2007; 122: 451– 457. https://doi.org/10.1007/s00439-007-0415-2

55. Choi B.Y., Madeo A.C., King K.A., et al. Segregation of enlarged vestibular aqueducts in families with non-diagnostic SLC26A4 genotypes. J Med Genet. 2009; 46: 856–861. https://doi.org/10.1136/ jmg.2009.067892

56. Chattaraj P., Munjal t., Honda K., et al. A common SLC26A4-linked haplotype underlying non-syndromic hearing loss with enlargement of the vestibular aqueduct. J. Med. Genet. 2017; 10: 665–673. https://doi.org/10.1136/jmedgenet-2017-104721.

57. Reardon W., Coffey R., Chowdhury t., et al. Prevalence, age of onset, and natural history of thyroid disease in Pendred syndrome. J. Med. Genet. 1999; 36: 595–598. https://doi.org/10.1136/jmg.36.8.595

58. Madeo A.C., Manichaikul A., Reynolds J.C., et al. Evaluation of the thyroid in patients with hearing loss and enlarged vestibular aqueducts. Arch. Otolaryngol. Head. Neck. Surg. 2009; 135: 670–676. https://doi.org/10.1001/archoto.2009.66

59. Ladsous M., Vlaeminck-Guillem V., Dumur V., et al. Analysis of the thyroid phenotype in 42 patients with Pendred syndrome and nonsyndromic enlargement of the vestibular aqueduct. Thyroid. 2014; 24: 639–648.https://doi.org/10.1089/thy.2013.0164

60. Soh L.M., Druce M., Grossman A.B., et al. Evaluation of genotype-phenotype relationships in patients referred for endocrine assessment in suspected Pendred syndrome. Eur. J. Endocrinol. 2015; 172:217–226. https://doi.org/10.1530/eje-14-0679

61. Lee H.J., Jung J., Shin J.W., et al. Correlation between genotype and phenotype in patients with bi-allelic SLC26A4 mutations. Clin. Genet. 2014; 86(3): 270–275. doi: 10.1111/cge.12273.

62. Zhao J., Yuan Y., Huang S., et al. KCNJ10 may not be a contributor to nonsyndromic enlargement of vestibular aqueduct (NSEVA) in Chinese subjects. PLoS ONE 2014; 9(11): e108134. doi: 10.1371/journal.pone.0108134.

63. Danilchenko V.Y., Zytsar M.V., Maslova E.A., et al. Different Rates of the SLC26A4-Related Hearing Loss in two Indigenous Peoples of Southern Siberia (Russia). Diagnostics 2021; 11: 2378. doi.org/10.3390/diagnostics11122378.

64. tesolin P., Fiorino S., Lenarduzzi S., et al. Pendred Syndrome, or Not Pendred Syndrome? that Is the Question. Genes. 2021; 12(10): 1569. https://doi.org/10.3390/genes12101569

65. Bałdyga N., Oziębło D., Gan N., et al. the Genetic Background of Hearing Loss in Patients with EVA and Cochlear Malformation. Genes 2023; 14(2): 335. https://doi.org/10.3390/genes14020335

66. Smits J.J., de Bruijn S.E., Lanting C.P., et al. Exploring the missing heritability in subjects with hearing loss, enlarged vestibular aqueducts, and a single or no pathogenic SLC26A4 variant. Hum. Genet. 2022; 141: 465–484. doi: 10.1007/s00439-021-02336-6.

67. Chao J.R., Chattaraj P., Munjal t. et al. SLC26A4-linked CEVA haplotype correlates with phenotype in patients with enlargement of the vestibular aqueduct. BMC Med Genet 2019; 20 (1): 118. https://doi.org/10.1186/s12881-019-0853-4


Рецензия

Для цитирования:


Чердонова А.М., Борисова Т.В., Пшенникова В.Г., Терютин Ф.М., Кларов Л.А., Никанорова А.А., Романов Г.П., Соловьев А.В., Федорова С.А., Барашков Н.А. Анализ гена SLC26A4 и его генетического окружения у пациентов с нарушениями слуха и расширенным водопроводом преддверия в Бурятии. Медицинская генетика. 2023;22(7):51-60. https://doi.org/10.25557/2073-7998.2023.07.51-60

For citation:


Cherdonova A.M., Borisova T.V., Pshennikova V.G., Teryutin F.M., Klarov L.A., Nikanorova A.A., Romanov G.P., Solovyev A.V., Fedorova S.A., Barashkov N.A. Analysis of the SLC26A4 gene including its genetic background in patients with hearing impairments and an enlarged vestibular aqueduct from Buryatia. Medical Genetics. 2023;22(7):51-60. (In Russ.) https://doi.org/10.25557/2073-7998.2023.07.51-60

Просмотров: 251


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)