Nucleotide changes in patients with familial exudative vitreoretinopathy in the Russian Federation
https://doi.org/10.25557/2073-7998.2023.07.30-38
Abstract
Background. Familial exudative vitreoretinopathy (FEVR) is a rare hereditary genetically heterogeneous disease characterized by impaired retinal angiogenesis and variable clinical manifestations. The FZD4 gene is the most studied of those associated with FEVR. Molecular genetic examination of a large cohort of patients with FEVR in the Russian Federation was not carried out.
Objective: to study the spectrum of variants of the nucleotide sequence of genes in patients with FEVR in the Russian Federation, to identify clinical and genetic correlations.
Methods. 58 patients (31 girls, 27 boys) with FEVR aged from 3 weeks to 17 years were examined in an interdisciplinary manner at the Helmholtz National Research Centre of Eye disease and the Research Centre for Medical Genetics. All patients underwent an in-depth ophthalmological examination. The molecular genetic examination was carried out by direct Sanger sequencing and high-throughput sequencing methods.
Results. Variants of the nucleotide sequence of the FZD4 gene were found in 10 patients (17.2%) from 9 unrelated families, of which 3 were identified for the first time. Single-nucleotide deletions and substitutions were identified with the same frequency. The features of patients with identified variants of the nucleotide sequence of the FZD4 gene are early manifestation, asymmetric lesion, progressive course and autosomal dominant inheritance.
Keywords
About the Authors
L. A. KatarginaRussian Federation
14/19, Sadovaya-Chernogryazskaya st., Moscow, 105062
V. V. Kadyshev
Russian Federation
1, Moskvorechye st., Moscow, 115522
E. V. Denisova
Russian Federation
14/19, Sadovaya-Chernogryazskaya st., Moscow, 105062
E. A. Geraskina
Russian Federation
14/19, Sadovaya-Chernogryazskaya st., Moscow, 105062
S. A. Ionova
Russian Federation
1, Moskvorechye st., Moscow, 115522
T. A. Vasilyeva
Russian Federation
1, Moskvorechye st., Moscow, 115522
A. V. Marakhonov
Russian Federation
1, Moskvorechye st., Moscow, 115522
R. A. Zinchenko
Russian Federation
1, Moskvorechye st., Moscow, 115522
12, bldg..1, Vorontsovo pole st., Moscow, 105064
References
1. Gilmour D. F. Familial exudative vitreoretinopathy and related retinopathies. Eye (Lond) 2015;29:1–14
2. Criswick V. G., Schepens C. L. Familial exudative vitreoretinopathy. Am. J. Ophthalmol. 1969;68(4):578–594.
3. Pendergast S. D., trese M. t. Familial exudative vitreoretinopathy: results of surgical management. Ophthalmology. 1998;105:1015-1023.
4. Xia, F., Lyu, J., Fei, P. et al. Diagnosis of complicated FEVR preoperatively and intra−/post-operatively: characteristics and risk factors for diagnostic timing. BMC Ophthalmol 2019; 19: 126.
5. Wang S., Zhang X., Hu Y., et al. Clinical and genetical features of probands and affected family members with familial exudative vitreoretinopathy in a large Chinese cohort. Br J Ophthalmol. 2021;105(1):83-86. doi: 10.1136/bjophthalmol-2019-315598
6. Salvo J., Lyubasyuk V., Xu M. et al. Next-generation sequencing and novel variant determination in a cohort of 92 familial exudative vitreoretinopathy patients. Invest Ophthalmol Vis Sci. 2015;56:1937–1946.
7. Huang L., Lu J., Zhang L. et al. Whole-Gene Deletions of FZD4 Cause Familial Exudative Vitreoretinopathy. Genes (Basel). 2021;12(7):980. doi: 10.3390/genes12070980.
8. Ye X., Wang Y., Cahill H. et al., Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 2009; 139(2): 285–298.
9. Luhmann U. F. O., Lin J., Acar N. et al. Role of the Norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature. Investigative Opthalmology & Visual Science 2005; 46(9): 3372–3382.
10. Isaeva A.V., Zima A.P., Shabalova I.P., et al. β-Katenin: struktura, funktsii i rol’ v opukholevoy transformatsii epitelial’nykh kletok [β-Catenin: Structure, Function and Role in Malignant transformation of Epithelial Cells]. Vestnik rossiyskoy akademii meditsinskikh nauk [Bulletin of the Russian Academy of Medical Sciences]. 2015;(4):475-83 (In Russ.)
11. Valenta t., Hausmann G., Basler K. the many faces and functions of b-catenin. EMBO J. 2012; 31: 2714–2736
12. Easwaran V., Lee S. H., Inge L. et al. beta-Catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res. 2003; 63 (12): 3145–3153.
13. Shivanna S., Harrold I., Shashar M., et al. the c-Cbl ubiquitin ligase regulates nuclear β-catenin and angiogenesis by its tyrosine phosphorylation mediated through the Wnt signaling pathway. J Biol Chem. 2015;290(20):12537-46. doi: 10.1074/jbc.M114.616623.
14. Zhu X., Sun K., Huang L. et al. Identification of Novel Mutations in the FZD4 and NDP Genes in Patients with Familial Exudative Vitreoretinopathy in South India. Genet test Mol Biomarkers. 2020;24(2):92-98. doi: 10.1089/gtmb.2019.0212.
15. Wang Y., Rattner A., Zhou Y. et al. Norrin/frizzled 4 signaling in retinal vascular development and blood brain barrier plasticity. Cell. 2012;151(6):1332–1344.
16. Xu Q., Wang Y., Dabdoub A. et al. Vascular development in the retina and inner ear: control by Norrin and frizzled-4, a high-affinity ligand-receptor pair. Cell. 2004;116(6):883–895.
17. Qin M., Hayashi H., Oshima K. et al. Complexity of the genotype-phenotype correlation in familial exudative vitreoretinopathy with mutations in the LRP5 and/or FZD4 genes. Hum Mutat. 2005;26(2):104-12. doi: 10.1002/humu.20191.
18. Chen C., Sun L., Li S., Huang L., et al. the spectrum of genetic mutations in patients with asymptomatic mild familial exudative vitreoretinopathy. Exp Eye Res. 2020;192:107941. doi: 10.1016/j.exer.2020.107941.
19. Nykamp K., Anderson M., Powers M. et al. comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med. 2017;19(10):1105-1117. doi: 10.1038/gim.2017.37.
20. Fan J., Venkateswaran N., Fan K.C. et al. Familial exudative vitreoretinopathy associated with retinal astrocytic hamartoma. Am J Ophthalmol Case Rep. 2022;25:101312. doi: 10.1016/j.ajoc.2022.101312.
21. Yang H., Li S., Xiao X. et al. Identification of FZD4 and LRP5 mutations in 11 of 49 families with familial exudative vitreoretinopathy. MolVis. 2012;18:2438-46.
22. Iarossi G., Bertelli M., Maltese P.E. et al. Genotype-Phenotype Characterization of Novel Variants in Six Italian Patients with Familial Exudative Vitreoretinopathy. J Ophthalmol. 2017;2017:3080245. doi: 10.1155/2017/3080245.
23. Drenser K.A., Dailey W., Vinekar A. et al. Clinical presentation and genetic correlation of patients with mutations affecting the FZD4 gene. ArchOphthalmol. 2009;127(12):1649-54. doi: 10.1001/archophthalmol.2009.322.
24. Milhem R.M., Ben-Salem S., Al-Gazali L. et al. Identification of the cellular mechanisms that modulate trafficking of frizzled family receptor 4 (FZD4) missense mutants associated with familial exudative vitreoretinopathy. Investigative Ophthalmology & Visual Science. 2014; 55(6):3423-3431. DOI: 10.1167/iovs.14-13885.
25. Lu J., Huang L., Sun L. et al. FZD4 in a Large Chinese Population With Familial Exudative Vitreoretinopathy: Molecular Characteristics and Clinical Manifestations. Invest Ophthalmol Vis Sci. 2022;63(4):7. doi: 10.1167/iovs.63.4.7.
26. Rao F. Q., Cai, X. B., Cheng, F. F. et al. Mutations in LRP5, FZD4, tSPAN12, NDP, ZNF408, or KIF11 genes account for 38.7% of Chinese patients with familial exudative vitreoretinopathy. Investig. Opthalmol. Vis. Sci. 2017; 58(5): 2623– 2629. https://doi.org/10.1167/iovs.16-21324
27. Li J.K., Li Y., Zhang X. et al. Spectrum of Variants in 389 Chinese Probands With Familial Exudative Vitreoretinopathy. Investig. Opthalmol. Vis. Sci. 2018;59:5368–5381. doi: 10.1167/ iovs.17-23541.
28. toomes C., Bottomley H.M., Scott S. et al. Spectrum and frequency of FZD4 mutations in familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci. 2004;45(7):2083-2090.
29. Omoto S., Hayashi t., Kitahara K. et al. Autosomal dominant familial exudative vitreoretinopathy in two Japanese families with FZD4 mutations (H69Y and C181R). Ophthalmic Genet. 2004;25(2):81-90. doi: 10.1080/13816810490514270.
30. Nallathambi J., Shukla D., Rajendran A. et al. Identification of novel FZD4 mutations in Indian patients with familial exudative vitreoretinopathy. Mol Vis. 2006;12:1086-92.
31. tao t., Xu N., Li J. et al. Ocular Features and Mutation Spectrum of Patients With Familial Exudative Vitreoretinopathy. Invest Ophthalmol Vis Sci. 2021;62(15):4. doi: 10.1167/iovs.62.15.4.
32. Wai Y.Z., Chong, Y.Y., Lim, L.t. et al. Familial exudative vitreoretinopathy in a 4 generations family of South-East Asian Descendent with FZD4 mutation (c.1501_1502del). Int J Retin Vitr. 2020; 8: 30. https://doi.org/10.1186/s40942-022-00384-2
33. Seo S. H. et al. Molecular characterization of FZD4, LRP5, and TSPAN12 in familial exudative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci. 2015; 56: 5143–5151.
34. Nikopoulos K., Venselaar H. Collin R.W., et. al. Overview of the mutation spectrum in familial exudative vitreoretinopathy and Norrie disease with identification of 21 novel variants in FZD4, LRP5, and NDP. Hum Mutat. 2010;31(6):656-66.
Review
For citations:
Katargina L.A., Kadyshev V.V., Denisova E.V., Geraskina E.A., Ionova S.A., Vasilyeva T.A., Marakhonov A.V., Zinchenko R.A. Nucleotide changes in patients with familial exudative vitreoretinopathy in the Russian Federation. Medical Genetics. 2023;22(7):30-38. (In Russ.) https://doi.org/10.25557/2073-7998.2023.07.30-38