Preview

Medical Genetics

Advanced search

Effect of C70 fullerene derivatives on the transcriptional activity of genes of oxidative metabolism

https://doi.org/10.25557/2073-7998.2023.02.30-39

Abstract

   Objective. We aimed to study the effect of water-soluble aryl C70 fullerene derivatives on the transcriptional activity of genes regulating oxidative metabolism.

   Methods. The toxicity of two derivatives of C70 with minor changes in the structure was studied using the MTT test on a culture of human embryonic lung fibroblasts as well as intracellular reactive oxygen species, expression of NOX4 and NRF2 genes and proteins. Fluorescence microscopy, real-time PCR-RT, and flow cytometry were used.
   Results. Both compounds equally caused a decrease in intracellular ROS during the day, an increase in the expression of the NOX4 gene and protein, and an increase in the expression of the NRF2 gene and protein. Probably, an increase in NOX4 expression is compensatory in response
to the development of an intracellular antioxidant state, and an increase in NRF2 expression is compensatory in response to NOX4 activation.

   Conclusion. Modification of the surface with substituents that enhance the antioxidant properties of the substance leads to a change in the mechanism of the influence of nanoparticles on genes, while minor differences in the structure of substituents do not significantly determine the effects.

About the Authors

E. A. Savinova
Research Center for Medical Genetic
Russian Federation

Ekaterina A. Savinova

115522

1, Moskvorechye str.

Moscow



V. A. Sergeeva
Research Center for Medical Genetic
Russian Federation

115522

1, Moskvorechye str.

Moscow



E. S. Ershova
Research Center for Medical Genetic
Russian Federation

115522

1, Moskvorechye str.

Moscow



E. V. Proskurnina
Research Center for Medical Genetic
Russian Federation

115522

1, Moskvorechye str.

Moscow



L. V. Kameneva
Research Center for Medical Genetic
Russian Federation

115522

1, Moskvorechye str.

Moscow



O. A. Dolgikh
Research Center for Medical Genetic
Russian Federation

115522

1, Moskvorechye str.

Moscow



T. A. Salimova
Research Center for Medical Genetic
Russian Federation

115522

1, Moskvorechye str.

Moscow



N. N. Veiko
Research Center for Medical Genetic
Russian Federation

115522

1, Moskvorechye str.

Moscow



O. A. Krayevaya
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Russian Federation

142432

1, Academician Semenov avenue

Moscow region

Chernogolovka



P. A. Troshin
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Russian Federation

142432

1, Academician Semenov avenue

Moscow region

Chernogolovka



S. V. Kostyuk
Research Center for Medical Genetic
Russian Federation

115522

1, Moskvorechye str.

Moscow



References

1. Abbasi Kajani A., Haghjooy Javanmard S., Asadnia M., Razmjou A. Recent Advances in Nanomaterials Development for Nanomedicine and Cancer. ACS Appl Bio Mater 2021, 4, 5908-5925, doi: 10.1021/acsabm.1c00591.

2. Cote B., Rao D., Alani A. W. G. Nanomedicine for Drug Delivery throughout the Alimentary Canal. Mol Pharm 2022, 19, 2690-2711, doi: 10.1021/acs.molpharmaceut.0c00694.

3. Liu H., Zhong W., Zhang X., Lin D., Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021, 9, 7878-7908, doi: 10.1039/d1tb01316e.

4. Dellinger A., Zhou Z., Connor J., Madhankumar A. B., Pamujula S., Sayes C. M., Kepley C. L. Application of fullerenes in nanomedicine: an update. Nanomedicine (Lond) 2013, 8, 1191-1208, doi: 10.2217/nnm.13.99.

5. Nakamura S., Mashino T. Water-soluble fullerene derivatives for drug discovery. J Nippon Med Sch 2012, 79, 248-254, doi: 10.1272/jnms.79.248.

6. Hsieh F. Y., Zhilenkov A. V., Voronov I. I.; Khakina E. A., Mischenko D. V., Troshin P. A., Hsu S. H. Water-Soluble Fullerene Derivatives as Brain Medicine: Surface Chemistry Determines If They Are Neuroprotective and Antitumor. ACS Appl Mater Interfaces 2017, 9, 11482-11492, doi: 10.1021/acsami.7b01077.

7. Bosi S., Da Ros T., Spalluto G., Prato M. Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 2003, 38, 913-923, doi: 10.1016/j.ejmech.2003.09.005.

8. Bogdanovic G., Djordjevic A. Carbon nanomaterials: Biologically active fullerene derivatives. Srp Arh Celok Lek 2016, 144, 222-231.

9. Trpkovic A., Todorovic-Markovic B., Trajkovic V. Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress. Arch Toxicol 2012, 86, 1809-1827, doi:10.1007/s00204-012-0859-6.

10. Sergeeva V., Kraevaya O., Ershova E., Kameneva L., Malinovskaya E., Dolgikh O., Konkova M., Voronov I., Zhilenkov A., Veiko N., et al. Antioxidant Properties of Fullerene Derivatives Depend on Their Chemical Structure: A Study of Two Fullerene Derivatives on HELFs. Oxid Med Cell Longev 2019, 2019, 4398695, doi: 10.1155/2019/4398695.

11. Ershova E. S., Sergeeva V. A., Tabakov V. J., Kameneva L. A., Porokhovnik L. N., Voronov I. I., Khakina E. A., Troshin P. A., Kutsev S. I., Veiko N. N., et al. Functionalized Fullerene Increases NF-kappaB Activity and Blocks Genotoxic Effect of Oxidative Stress in Serum-Starving Human Embryo Lung Diploid Fibroblasts. Oxid Med Cell Longev 2016, 2016, 9895245, doi: 10.1155/2016/9895245.

12. Ershova E. S., Sergeeva V. A., Chausheva A. I., Zheglo D. G., Nikitina V. A., Smirnova T. D., Kameneva L. V., Porokhovnik L. N., Kutsev S. I., Troshin P. A., et al. Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts. Mutat Res Genet Toxicol Environ Mutagen 2016, 805, 46-57, doi: 10.1016/j.mrgentox.2016.05.004.

13. Yan W., Seifermann S. M., Pierrat P., Brase S. Synthesis of highly functionalized C60 fullerene derivatives and their applications in material and life sciences. Org Biomol Chem 2015, 13, 25-54, doi: 10.1039/c4ob01663g.

14. Proskurnina E. V., Mikheev I. V., Savinova E. A., Ershova E. S., Veiko N. N., Kameneva L. V., Dolgikh O. A., Rodionov I. V., Proskurnin M. A., Kostyuk S. V. Effects of Aqueous Dispersions of C60, C70 and Gd@C82 Fullerenes on Genes Involved in Oxidative Stress and AntiInflammatory Pathways. Int J Mol Sci 2021, 22, doi: 10.3390/ijms22116130.

15. Kornev A. B., Peregudov A. S., Martynenko V. M., Balzarini J., Hoorelbeke B., Troshin P. A. Synthesis and antiviral activity of highly water-soluble polycarboxylic derivatives of [70]fullerene. Chem Commun (Camb) 2011, 47, 8298-8300, doi: 10.1039/c1cc12209f.

16. Fedorova N., Klimova R., Tulenev Y., Chichev E., Kornev A., Troshin P., Kushch A. Carboxylic Fullerene C60 Derivatives: Efficient Microbicides Against Herpes Simplex Virus And Cytomegalovirus Infections In Vitro. Mendeleev Communications 2012, 22, 254–256, doi: 10.1016/j.mencom.2012.09.009.

17. Mikheev I. V., Sozarukova M. M., Izmailov D. Y., Kareev I. E., Proskurnina E. V., Proskurnin M. A. Antioxidant Potential of Aqueous Dispersions of Fullerenes C60, C70, and Gd@C82. Int J Mol Sci 2021; 22. doi: 10.3390/ijms22115838.


Review

For citations:


Savinova E.A., Sergeeva V.A., Ershova E.S., Proskurnina E.V., Kameneva L.V., Dolgikh O.A., Salimova T.A., Veiko N.N., Krayevaya O.A., Troshin P.A., Kostyuk S.V. Effect of C70 fullerene derivatives on the transcriptional activity of genes of oxidative metabolism. Medical Genetics. 2023;22(2):30-39. (In Russ.) https://doi.org/10.25557/2073-7998.2023.02.30-39

Views: 352


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)