Preview

Medical Genetics

Advanced search

The Toll-like receptor 4 gene expression level and single nucleotide variants in the development of atherosclerosis

https://doi.org/10.25557/2073-7998.2023.02.18-29

Abstract

   Atherosclerosis is considered as a chronic inflammatory disease characterized by dysfunction of the endothelium of the vascular wall, migration of immune cells, subendothelial accumulation of lipids and proliferation of vascular smooth muscle cells with further formation of atherosclerotic plaques. Research data suggests the potential importance of Toll-like receptors (TLRs) and other key components of the innate immune system in the pathologies associated with atherosclerosis. Toll-like receptor 4 (TLR4) may play a key role in the immunopathogenesis of atherosclerosis.

   The aim of this study was to explore the association of TLR4 gene expression in macrophages and polymorphic variants rs4986790 and rs4986791 with the development of atherosclerosis in the St. Petersburg population.

   The study included 671 individuals: 220 patients with atherosclerosis of various localizations (coronary, cerebral, lower extremity artery pool); 75 patients with familial hypercholesterolemia with/without manifestation of atherosclerosis; 376 individuals without cardiovascular pathology as the control group. Genotyping of polymorphic variants of the TLR4 gene was performed by PCR followed by restriction analysis. Analysis of the TLR4 gene expression level in was performed in differentiated in vitro macrophages of 13 patients with coronary atherosclerosis and 19 representatives of the control group by real-time PCR. Patients with coronary atherosclerosis were characterized by an increased level of TLR4 gene expression in macrophages when compared with the control group. The Asp299Gly and Thr399Ile variants of the TLR4 gene were not associated with atherosclerosis development in the population of St. Petersburg, including patients with familial hypercholesterolemia.

About the Authors

I. A. Pobozheva
Pavlov First Saint-Petersburg State Medical University; Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre «Kurchatov Institute»
Russian Federation

197101

6/8, L. Tolstogo str.

188350

Mkr. Orlova Rostcha, Gatchina

St. Petersburg



K. V. Dracheva
Pavlov First Saint-Petersburg State Medical University; Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre «Kurchatov Institute»
Russian Federation

Ksenia V. Dracheva

197101

6/8, L. Tolstogo str.

188350

Mkr. Orlova Rostcha, Gatchina

St. Petersburg



M. V. Muzalevskaya
Department for Atherosclerosis and Lipid Disorders of North-Western district scientific and clinical center named after L. G. Sokolov, Federal Medical and Biological Agency”
Russian Federation

194291

4, Kultury Pr.

St. Petersburg



A. A. Panteleeva
Pavlov First Saint-Petersburg State Medical University; Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Centre «Kurchatov Institute»
Russian Federation

197101

6/8, L. Tolstogo str.

188350

Mkr. Orlova Rostcha, Gatchina

St. Petersburg



S. A. Urazgildeeva
Department for Atherosclerosis and Lipid Disorders of North-Western district scientific and clinical center named after L. G. Sokolov, Federal Medical and Biological Agency”; Scientific, clinical and educational center “Cardiology” of Saint-Petersburg State University
Russian Federation

194291

4, Kultury Pr.

191226

20-1, Korablestroiteley str.

St. Petersburg



V. S. Gurevich
Department for Atherosclerosis and Lipid Disorders of North-Western district scientific and clinical center named after L. G. Sokolov, Federal Medical and Biological Agency”; Scientific, clinical and educational center “Cardiology” of Saint-Petersburg State University; North-Western State Medical University named after I. I. Mechnikov
Russian Federation

194291

4, Kultury Pr.

191226

20-1, Korablestroiteley str.

1911015

41, Kirochnaya str.

St. Petersburg



V. V. Davydenko
Pavlov First Saint-Petersburg State Medical University
Russian Federation

197101

6/8, L. Tolstogo str.

St. Petersburg



O. A. Berkovich
Pavlov First Saint-Petersburg State Medical University
Russian Federation

197101

6/8, L. Tolstogo str.

St. Petersburg



E. I. Baranova
Pavlov First Saint-Petersburg State Medical University
Russian Federation

197101

6/8, L. Tolstogo str.

St. Petersburg



S. N. Pchelina
Pavlov First Saint-Petersburg State Medical University
Russian Federation

197101

6/8, L. Tolstogo str.

St. Petersburg



V. V. Miroshnikova
Pavlov First Saint-Petersburg State Medical University
Russian Federation

197101

6/8, L. Tolstogo str.

St. Petersburg



References

1. Wolf D., Ley K. Immunity and inflammation in atherosclerosis. Circulation research 2019; 124 (2): 315-327. Doi: 10.1161/CIRCRESAHA.118.313591

2. Aronov D. M., Lupanov V. P. Nekotoryye aspekty patogeneza ateroskleroza. [Some aspects of the pathogenesis of atherosclerosis]. Ateroskleroz i dislipidemii [The Journal of Atherosclerosis and Dyslipidemias]. 2011; 1: 48-56 (In Russ.).

3. Erridge C. The roles of Toll-like receptors in atherosclerosis. Journal of innate immunity 2009; 1 (4): 340-349. Doi: 10.1159/000191413

4. Roshan M. H. K., Tambo A., Pace N. P. The Role of TLR2, TLR4, and TLR9 in the Pathogenesis of Atherosclerosis. International Journal of Inflammation 2016; 2016: 1–11. Doi: 10.1155/2016/1532832

5. Ipatova V. A., Ponasenko A. V., Khutornaya M. V., Tsepokina A. V., Golovkin A. S. Vklad genov Toll-podobnykh retseptorov v etiopatogenez ishemicheskoy bolezni serdtsa [The contribution of Toll-like receptor genes in the etiopathogenesis of coronary artery disease]. Ateroskleroz [Aterosclerosis]. 2014; 10 (4): 10-18. (In Russ.)

6. Miller Y. I. Toll-like receptors and atherosclerosis: oxidized LDL as an endogenous Toll-like receptor ligand. Future Cardiology 2005; 1 (6): 785-92. doi: 10.2217/14796678.1.6.785

7. Chávez-Sánchez L., Madrid-Miller A., Chávez-Rueda K. et al. Activation of TLR2 and TLR4 by minimally modified low-density lipoprotein in human macrophages and monocytes triggers the inflammatory response. Human immunology 2010; 71 (8): 737-744. Doi: 10.1016/j.humimm.2010.05.005

8. Howell K. W., Meng X., Fullerton D. A., et al. Toll-like receptor 4 mediates oxidized LDL-induced macrophage differentiation to foam cells. Journal of Surgical Research 2011; 171 (1): e27-e31. Doi: 10.1016/j.jss.2011.06.033.

9. Xie P., Cao Y. S., Su P., et al. Expression of toll-like receptor 4, tumor necrosis factor-alpha, matrix metalloproteinase-9 and effects of benazepril in patients with acute coronary syndromes. Clinical Medicine Insights: Cardiology 2010; 4: CMC-S5659. Doi: 10.4137/CMC.S5659

10. Shao L., Zhang P., Zhang Y., Lu Q., Ma A. TLR3 and TLR4 as potential clinically biomarkers of cardiovascular risk in coronary artery disease (CAD) patients. Heart and vessels 2014; 29 (5): 690-698. Doi: 10.1007/s00380-013-0421-3

11. Geng H. L., Lu H. Q., Zhang L. Z., et al. Increased expression of Toll like receptor 4 on peripheral-blood mononuclear cells in patients with coronary arteriosclerosis disease. Clinical & Experimental Immunology 2006; 143 (2): 269-273. Doi: 10.1111/j.1365-2249.2005.02982.x

12. Shiraki R., Inoue N., Kobayashi S., et al. Toll-like receptor 4 expressions on peripheral blood monocytes were enhanced in coronary artery disease even in patients with low C-reactive protein. Life sciences 2006; 80 (1): 59-66. Doi: 10.1016/j.lfs.2006.08.027

13. Xu X. H., Shah P. K., Faure E., et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 2001; 104 (25): 3103-3108. Doi: 10.1161/hc5001.100631

14. Edfeldt K., Swedenborg J., Hansson G. K., Yan Z. Q. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 2002; 105 (10): 1158-1161. doi:10.1161/circ.105.10.1158

15. Ya-Jun Zhu, Chao Wang, Guangyao Song, et al. Toll-like receptor-2 and -4 are associated with hyperlipidemia. Molecular Medicine Reports 2015; 12 (6): 8241-8246. Doi: 10.3892/mmr.2015.4465.

16. Hjuler Nielsen, M., Irvine, H., Vedel, S., et al. Elevated atherosclerosis-related gene expression, monocyte activation and microparticle-release are related to increased lipoprotein-associated oxidative stress in familial hypercholesterolemia. PLoS One 2015; 10 (4): e0121516. Doi: 10.1371/journal.pone.0121516

17. Yamakawa N., Ohto U., Akashi-Takamura S., et al. Human TLR4 polymorphism D299G/T399I alters TLR4/MD-2 conformation and response to a weak ligand monophosphoryl lipid A. International immunology 2013; 25 (1): 45-52. Doi: 10.1093/intimm/dxs084

18. Kukharchuk V. V., Ezhov M. V., Sergienko I. V. et al. Diagnostika i korrektsiya narusheniy lipidnogo obmena s tsel’yu profilaktiki i lecheniya ateroskleroza. Rossiyskiye rekomendatsii, VII peresmotr [Diagnosis and correction of lipid metabolism disorders in order to prevent and treat atherosclerosis. Russian recommendations VII revision] Ateroskleroz i dislipidemii [Atherosclerosis and dyslipidemia]. 2020; 1 (38): 7-42. DOI: 10.34687/2219-8202.JAD.2020.01.0002 (In Russ.)

19. Miroshnikova V. V., Romanova O. V., Ivanova O. N., et al. Targeted sequencing identified novel variants in the LDLR gene in Russian patients with familial hypercholesterolemia. Biomedical Reports 2021; 14 (1): 15. Doi: 10.3892/br.2020.1391.

20. Ferwerda B., McCall M. B., Alonso S., et al. TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proceedings of the National Academy of Sciences 2007; 104 (42): 16645-16650. Doi: 10.1073/pnas.0704828104

21. Long H., O’Connor B. P., Zemans R. L., et al. The Toll-Like Receptor 4 Polymorphism Asp299Gly but Not Thr399Ile Influences TLR4 Signaling and Function. PLoS ONE 2014; 9 (4): e93550. Doi:10.1371/journal.pone.0093550

22. Ameziane, N., Beillat, T., Verpillat, P., et al. Association of the Tolllike receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arteriosclerosis, thrombosis, and vascular biology 2003; 23 (12): e61-e64. Doi: 10.1161/01.ATV.0000101191.92392.1D

23. Belforte F. S., Coluccio Leskow F., Poskus E., Penas Steinhardt A. Toll-like receptor 4 D299G polymorphism in metabolic disorders: a meta-analysis. Molecular biology reports 2013; 40 (4): 3015-3020. Doi: 10.1007/s11033-012-2374-5

24. Wu B. W., Zhu J., Shi H. M., et al. Association between Toll-like receptor 4 Asp299Gly polymorphism and coronary heart disease susceptibility. Brazilian Journal of Medical and Biological Research 2017; 50. Doi: 10.1590/1414-431X20176306

25. Yang I. A., Holloway J. W., Ye S. TLR4 Asp299Gly polymorphism is not associated with coronary artery stenosis. Atherosclerosis 2003; 170 (1): 187-190. Doi: 10.1016/S0021-9150(03)00286-7

26. Barbarash O. L., Golovkin A. S., Ponasenko A. V., et al. Rol’ polimorfizma genov Toll-podobnykh retseptorov v razvitii oslozhneniy ateroskleroza The role of Toll-like receptors polymorphism in atherosclerosis complications development. Rossiyskiy kardiologicheskiy zhurnal Russian Journal of Cardiology 2015; (12): 72-79. (In Russ.) URL: https://russjcardiol.elpub.ru/jour/article/view/480?locale=ru_RU

27. Wu B. W., Zhu J., Shi H. M., et al. Association between Toll-like receptor 4 Asp299Gly polymorphism and coronary heart disease susceptibility. Brazilian Journal of Medical and Biological Research 2017; 50 (9): e6306. Doi: 10.1590/1414-431X20176306

28. Hommels M. J., Kroon A. A., Netea M. G., et al. The Asp299Gly Tolllike receptor 4 polymorphism in advanced aortic atherosclerosis. Netherlands Journal of Medicine 2007; 65 (6): 203-7.

29. Vainas T., Stassen F. R. M., Bruggeman C. A., et al. Synergistic effect of Toll-like receptor 4 and CD14 polymorphisms on the total atherosclerosis burden in patients with peripheral arterial disease. Journal of Vascular Surgery 2006; 44 (2): 326-32. Doi: 10.1016/j.jvs.2006.04.035

30. Xie X., Shi X., Liu M. The Roles of TLR Gene Polymorphisms in Atherosclerosis: A Systematic Review and Meta-Analysis of 35,317 Subjects. Scandinavian Journal of Immunology 2017; 86 (1): 50-58. Doi:10.1111/sji.12560

31. Netea M. G., Hijmans A., van Wissen S., et al.Toll-like receptor-4 Asp299Gly polymorphism does not influence progression of atherosclerosis in patients with familial hypercholesterolaemia. European Journal of Clinical Investigation 2004; 34 (2): 94–99. Doi: 10.1111/j.1365-2362.2004.01303.x

32. Shalaev S. V., Safiullina Z. M., Kremneva L. V., Abaturova O. V. Sravnitel’naya effektivnost’ statinov v profilaktike i lechenii ishemicheskoy bolezni serdtsa [Comparative efficacy of the statins in the preventing and treating of the coronary heart disease]. Ratsional’naya farmakoterapiya v kardiologii [Rational Pharmacotherapy in Cardiology]. 2010; 6 (6): 865-869. (In Russ.) Doi: 10.20996/1819-6446-2010-6-6-865-869.

33. Boekholdt S. M., Agema W. R., Peters R. J., et al. Variants of toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events. Circulation 2003; 107 (19): 2416-2421. Doi: 10.1161/01.CIR.0000068311.40161.28

34. Holloway J. W., Yang I. A., Ye, S. Variation in the toll-like receptor 4 gene and susceptibility to myocardial infarction. Pharmacogenetics and genomics 2005; 15 (1): 15-21. Doi: 10.1097/01213011-200501000-00003

35. Koushki K., Shahbaz S. K., Mashayekhi K., et al. Anti-inflammatory action of statins in cardiovascular disease: the role of inflammasome and toll-like receptor pathways. Clinical reviews in allergy & immunology 2021; 60 (2): 175-199. Doi: 10.1007/s12016-020-08791-9.

36. Yang S. S., Li R., Qu X., et al. Atorvastatin decreases Toll-like receptor 4 expression and downstream signaling in human monocytic leukemia cells. Cellular immunology 2012; 279 (1): 96-102. Doi:10.1016/j.cellimm.2012.09.008

37. Methe H., Kim J. O., Kofler S., Nabauer M., Weis M. Statins decrease Toll-like receptor 4 expression and downstream signaling in human CD14+ monocytes. Arteriosclerosis, thrombosis, and vascular biology 2005; 25 (7): 1439-1445. Doi: 10.1161/01.ATV.0000168410.44722.86

38. Ishikawa Y., Satoh M., Itoh T., et al. Local expression of Toll-like receptor 4 at the site of ruptured plaques in patients with acute myocardial infarction. Clinical Science 2008; 115 (4): 133–140. Doi:10.1042/cs20070379

39. Kashiwagi M., Imanishi T., Ozaki Y., et al. Differential expression of Toll-like receptor 4 and human monocyte subsets in acute myocardial infarction. Atherosclerosis 2012; 221 (1): 249-253. Doi:10.1016/j.atherosclerosis.2011.12.030

40. Du P., Gao K., Cao Y., et al. RFX1 downregulation contributes to TLR4 overexpression in CD14+ monocytes via epigenetic mechanisms in coronary artery disease. Clinical epigenetics 2019; 11(1): 1-19. Doi: 10.1186/s13148-019-0646-9

41. Jaguin M., Houlbert N., Fardel O., Lecureur V. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cellular Immunology 2013; 281 (1): 51–61. Doi: 10.1016/j.cellimm.2013.01.010

42. Tapp L. D., Shantsila E., Wrigley B. J., Montoro-Garcia S., Lip G. Y. TLR 4 expression on monocyte subsets in myocardial infarction. Journal of internal medicine 2013; 273 (3): 294-305. Doi: 10.1111/joim.12011.

43. Gankovskaya L. V., Stakhovskaya L. V., Grechenko V. V., et al. Giperekspressiya TLR2 i TLR4 u bol’nykh s ishemicheskim insul’tom v ostrom periode zabolevaniya Hyperexpression of TLR2 and TLR4 in patients with ischemic stroke in acute period of the disease. Meditsinskaya immunologiya Medical Immunology 2020; 22 (4): 665-674. (In Russ.) Doi: 10.15789/1563-0625-HOT-1971

44. Kania K. D., Hareza D, Wilczynski J. R., et al. The Toll-like Receptor 4 Polymorphism Asp299Gly Is Associated with an Increased Risk of Ovarian Cancer. Cells 2022, 11, 3137. Doi: 10.3390/cells11193137

45. Proença M. A., de Oliveira J. G., Cadamuro A. C., et al. TLR2 and TLR4 polymorphisms influence mRNA and protein expression in colorectal cancer. World Journal of Gastroenterology 2015; 21 (25): 7730-41. Doi: 10.3748/wjg.v21.i25.7730.

46. Ozaki Y., Imanishi T., Hosokawa S., et al. Association of toll-like receptor 4 on human monocyte subsets and vulnerability characteristics of coronary plaque as assessed by 64-slice multidetector computed tomography. Circulation Journal 2017; CJ-16. Doi: 10.1253/circj.CJ-16-0688

47. Ozaki Y., Imanishi T., Taruya A., et al. Circulating CD14+ CD16+ monocyte subsets as biomarkers of the severity of coronary artery disease in patients with stable angina pectoris. Circulation Journal 2012; CJ-12. Doi: 10.1253/circj.cj-12-0412

48. Rogacev K. S., Cremers B., Zawada A. M., Seiler S., Binder N., Ege P., et al. CD14++ CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. Journal of the American College of Cardiology 2012; 60 (16): 1512-1520. Doi: 10.1016/j.jacc.2012.07.019

49. Singh R. K., Haka A. S., Asmal A., Barbosa-Lorenzi V. C., Grosheva I., Chin H. F., et al. TLR4 (toll-like receptor 4)-dependent signaling drives extracellular catabolism of LDL (low-density lipoprotein) aggregates. Arteriosclerosis, thrombosis, and vascular biology 2020; 40 (1): 86-102. Doi: 10.1161/ATVBAHA.119.313200


Review

For citations:


Pobozheva I.A., Dracheva K.V., Muzalevskaya M.V., Panteleeva A.A., Urazgildeeva S.A., Gurevich V.S., Davydenko V.V., Berkovich O.A., Baranova E.I., Pchelina S.N., Miroshnikova V.V. The Toll-like receptor 4 gene expression level and single nucleotide variants in the development of atherosclerosis. Medical Genetics. 2023;22(2):18-29. (In Russ.) https://doi.org/10.25557/2073-7998.2023.02.18-29

Views: 430


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)