Preview

Medical Genetics

Advanced search

NEXT GENERATION SEQUENCING TECHNOLOGIES IN MEDICAL GENETIC STUDIES

https://doi.org/10.1234/XXXX-XXXX-2013-1-25-25

Abstract

In last 5 years next generation sequencing technologies made a huge impact on research of genetic aspects of pathogenesis and initiated the evolvement of the science of med ical genomics. At the moment we can observe multiple attempts of implementation of high-throughput sequencing in clinical diagnostics. Nevertheless those attempts might be meaningless without deep knowledge of such techniques, especially of its development, specificity and possible pitfalls. In this review we take a detailed overlook of existing and developing technologies and discuss most spectacular examples of its applications in medical genomics and its potential for implementation in routine diagnostic laboratory practice.

 

 

About the Authors

S. V. Toshchakov
Immanuel Kant Baltic Federal University
Russian Federation
236041, Russia, Kaliningrad, A.Nevskogo str.


I. N. Dominova
Immanuel Kant Baltic Federal University
Russian Federation
236041, Russia, Kaliningrad, A.Nevskogo str.


M. V. Patrushev
Immanuel Kant Baltic Federal University
Russian Federation
236041, Russia, Kaliningrad, A.Nevskogo str.


References

1. Brenner S. et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays // Nature bio-techno-ogy. — 2000. — 18. — P. 630—634.

2. Chen W. et al. Mapping translocation breakpoints by next-generati-on sequencing // Genome research. — 2008. — 18. — P. 1143—1149.

3. Flusberg B.A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing // Nature methods. — 2010. — 7. — P. 461—465.

4. Garaj S. et al. Graphene as a subnanometre trans-electrode membrane // Nature. — 2010. — 467. — P. 190—193.

5. Hall A. R. et al. Hybrid pore formation by directed insertion of a-haemolysin into solid-state nanopores // Nature nanotechnology. — 2010. — 5. — P. 874—877.

6. Harakalova M. et al. Genomic DNA pooling strategy for next-ge-neration sequencing-based rare variant discovery in abdominal aortic aneurysm regions of interest-challenges and limitations // Journal of cardiovascular translational research. — 2011. — 4. — P. 271—280.

7. Howorka S., Cheley S., Bayley H. Sequence-specific detection of individual DNA strands using engineered nanopores // Nature biotechno-ogy. — 2001. — 19. — P. 636—639.

8. Kasianowicz J.J., Brandin E., Branton D., Deamer D.W. Characterization of individual polynucleotide molecules using a membrane channel // Proceedings of the National Academy of Sciences of the United States of America. — 1996. — 93. — P. 13770—13773.

9. Ku C.S. et al. Technological advances in DNA sequence enrichment and sequencing for germline genetic diagnosis // Expert Rev. Mol. Diagn. — 2012. — 12(2). — P. 159—173.

10. Lander E.S. et al. Initial sequencing and ana-ysis of the human genome // Nature. — 2001. — 409(6822). — P. 860—921.

11. Lander E.S. Initial impact of the sequencing of the human genome // Nature. — 2011. — 470, — P. 187—197.

12. Levy S. et al. The diploid genome sequence of an individual human // PLoS biology. — 2007. — 5. — e254.

13. Luan B. et al. Base-by-base ratcheting of single stranded DNA through a solid-state nanopore // Physical review letters. — 2010. — 104, 238103.

14. Lupski J.R. et al. Whole-genome sequencing in a patient with Charcot—Marie—Tooth neuropathy //The New England journal of medicine. — 2010. — 362. — P. 1181—1191.

15. Margulies M. et al. Genome sequencing in microfabricated high-density picolitre reactors // Nature. — 2005. — 437. — P. 376—380.

16. McNally B. et al. Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays // Nano letters. — 2010. — 10. — P. 2237—2244.

17. Meder B. et al. Targeted next-generation sequencing for the molecular genetic diagnostics of cardiomyopathies // Circulation. Cardiovascu-ar genetics. — 2011. — 4. — P. 110—122.

18. Michils G. et al. Mo-ecular analysis of the breast cancer genes BRCA1 and BRCA2 using amplicon-based massive parallel pyro-sequencing // J. Mol. Diagn. — 2012. — 14(6). — P. 623—630.

19. Nunnally B.K., He H., Li L.C., Tucker S.A., McGown L.B. Characterization of visible dyes for four-decay fluorescence detection in DNA sequencing // Ana-ytical chemistry. — 1997. — 69. — P. 2392—2397.

20. Ozcelik H. Long-range PCR and next-generation sequencing of BRCA1 and BRCA2 in breast cancer // J. Mol. Diagn. — 2012. — 14(5). — P. 467—475.

21. Parsons D.W. et al. An integrated genomic analysis of human glioblastoma multiforme // Science (New York, N.Y.). — 2008. — 321. — P. 1807—1812.


Review

For citations:


Toshchakov S.V., Dominova I.N., Patrushev M.V. NEXT GENERATION SEQUENCING TECHNOLOGIES IN MEDICAL GENETIC STUDIES. Medical Genetics. 2013;12(1):15-25. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2013-1-25-25

Views: 614


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)