Preview

Медицинская генетика

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

In silico оценка возможного патогенетического влияния миссенс варианта c.441G>A p.(Met147Ile) гена SLC26A4 на функцию/структуру белка пендрина с применением нейросетевого алгоритма AlfhаFold

https://doi.org/10.25557/2073-7998.2022.06.37-48

Аннотация

В работе впервые проведена in silico оценка возможного патогенетического влияния варианта c.441G>A p.(Met147Ile) гена SLC26A4, имеющего в настоящее время статус -вариант неопределенного значения (US - uncertain significance), на функцию/структуру белка пендрина (SLC26A4), выполненного при помощи нейросетевого алгоритма AlphaFold, предсказывающего пространственную структуру белка, когда подобная структура неизвестна. На основе предсказанной модели третичной структуры пендрина человека, было проведено выравнивание мутантной (p.Met147Ile) и нативной структуры белка с помощью графической программы PyMOL. В результате рассчитанный показатель сходства двух структур RMSD (среднеквадратичное отклонение положения атомов) составил меньше 2 Å, то есть миссенс замена p.(Met147Ile) теоретически не нарушает структурную стабильность белка. Вероятно, патогенетическое влияние мутации происходит на функциональном уровне, поскольку анализируемая замена p.(Met147Ile) находится в критическом участке корового домена (эволюционно консервативный участок α3-спирали TMD), нарушение которого может привести к неправильной транспортировке субстрата или появлению токсичных конформаций в трансмембранной области.

Об авторах

В. Г. Пшенникова
ФГБНУ «Якутский научный центр комплексных медицинских проблем»
Россия


Г. П. Романов
ФГБНУ «Якутский научный центр комплексных медицинских проблем»; ФГАОУ ВО «Северо-Восточный федеральный университет им. М.К. Аммосова»
Россия


Л. А. Кларов
ФГБНУ «Якутский научный центр комплексных медицинских проблем»
Россия


Н. А. Барашков
ФГБНУ «Якутский научный центр комплексных медицинских проблем»
Россия


Список литературы

1. Scott D.A., Karniski L.P. Human pendrin expressed in Xenopus laevis oocytes mediates chloride/formate exchange. Am J Physiol Cell Physiol. 2000; 278: 207-211. doi: 10.1152/ajpcell.2000.278.1.C207.

2. Royaux I.E., Suzuki K., Mori A., et al. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology. 2000; 141(2): 839-845. doi: 10.1210/endo.141.2.7303.

3. Soleimani M. Molecular physiology of the renal chloride-formate exchanger. Curr Opin Nephrol Hypertens. 2001; 10(5): 677-83. doi: 10.1097/00041552-200109000-00020.

4. Bizhanova A., Kopp P. Controversies concerning the role of pendrin as an apical iodide transporter in thyroid follicular cells. Cellular Physiology and Biochemistry. 2011; 28(3): 485-90. doi:10.1159/000335103.

5. Jacques T., Picard N., Miller R.L., et al. Overexpression of Pendrin in Intercalated Cells Produces Chloride-Sensitive Hypertension. J Am Soc Nephrol. 2013; 24(7): 1104-1113. doi: 10.1681/ASN.2012080787.

6. Karniski L.P., Aronson P.S. Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes. Proceedings of the National Academy of Sciences of the United States of America. 1985; 82(18): 6362-6365. doi:10.1073/pnas.82.18.6362.

7. Kim H-M., Wangemann P. Failure of fluid absorption in the endolymphatic sac initiates cochlear enlargement that leads to deafness in mice lacking pendrin expression. PLOS ONE. 2010; 5(11): e14041. doi:10.1371/journal.pone.0014041.

8. Rimoin D.L., Schimke R.N. Genetic disorders of the endocrine glands. C.V. Mosby Co, St. Louis. 1971: 11-65.

9. Stinckens C., Huygen P.L.M., Van Camp G., Cremers C.W. Pendred syndrome redefined. Report of a new family fluctuating and progressive hearing loss. Advances in otorhinolaryngology. 2002; 61: 131-141.

10. Napiontek U., Borck G., Muller-Forell W., et al.Intrafamilial variability of the deafness and goiter phenotype in Pendred syndrome caused by a T416P mutation in the SLC26A4 gene. Journal of clinical endocrinology and metabolism. 2004; 89(11): 5347-5351.

11. Кларов Л.А., Николаева К.Ю., Пшенникова В.Г., и др. Мутации гена SLC26A4 у пациентов с аномалиями внутреннего уха: IP-I, IP-II (Mondini) и/или EVA в Якутии. Медицинская генетика. 2021; 20(9): 14-25. doi: 10.25557/2073-7998.2021.09.14-25.

12. Jonard L., Niasme-Grare M., Bonnet C., et al. Screening of SLC26A4, FOXI1 and KCNJ10 genes in unilateral hearing impairment with ipsilateral enlarged vestibular aqueduct.Int J Pediatr Otorhinolaryngol. 2010 Sep; 74(9): 1049-53. doi: 10.1016/j.ijporl.2010.06.002.

13. Ng P.C., Henikoff S. Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet. 2006; 7: 61-80. doi: 10.1146/annurev.genom.7.080505.115630.

14. Schwede T., Sali A., Eswar N., Peitsch M.C. Protein Structure Modeling.Computational Structural Biology. 2008: 3-35. https://doi.org/10.1142/9789812778789_0001.

15. Waterhouse A., Bertoni M., Bienert S., et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46(W1):W296-W303. doi: 10.1093/nar/gky427.

16. Jumper J., Evans R., Pritzel A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596: 583-589. https://doi.org/10.1038/s41586-021-03819-2.

17. Tunyasuvunakool K., Adler J., Wu Z., et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021; 596(7873): 590-596. doi: 10.1038/s41586-021-03828-1.

18. Gorbunov D., Sturlese M., Nies F., et al. Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters. Nat Commun. 2014; 5:3622. doi: 10.1038/ncomms4622.

19. Geertsma E.R., Chang Y.N., Shaik F.R., et al. Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol. 2015; 22: 803-808. doi: 10.1038/nsmb.3091.

20. Dossena S., Bernardinelli E., Sharma A.K., et al. The Pendrin Polypeptide. In: Dossena, S., Paulmichl, M. (eds) The Role of Pendrin in Health and Disease. Springer, Cham. 2017; 187-220: https://doi.org/10.1007/978-3-319-43287-8_11.

21. Kuwabara M.F., Wasano K., Takahashi S., et al. The extracellular loop of pendrin and prestin modulates their voltage-sensing property. J Biol Chem. 2018; 293(26): 9970-9980. doi: 10.1074/jbc.RA118.001831.

22. Babu M., Greenblatt J.F., Emili A., et al. Structure of a SLC26 anion transporter STAS domain in complex with acyl carrier protein: implications for E. coli YchM in fatty acid metabolism. Structure. 2010; 18(11): 1450-1462. doi: 10.1016/j.str.2010.08.015.

23. Sharma A.K., Rigby A.C., Alper S.L. STAS Domain Structure and Function. Cell Physiol Biochem. 2011. Nov; 28(3): 407-422. doi: 10.1159/000335104.

24. Sharma A.K., Krieger T., Rigby A.C., et al. Human SLC26A4/Pendrin STAS domain is a nucleotide-binding protein: Refolding and characterization for structural studies. Biochem Biophys Rep. 2016; 8: 184-191. doi: 10.1016/j.bbrep.2016.08.022.

25. Rapp C., Reinhart X.B., Reithmeier A.F. Molecular analysis of human solute carrier SLC26 anion transporter disease-causing mutations using 3-dimensional homology modeling. Biochim Biophys Acta Biomembr. 2017; 1859(12): 2420-2434. doi: 10.1016/j.bbamem.2017.09.016.

26. Bassot C., Minervini G., Leonardi E., Tosatto S.C.E. Mapping pathogenic mutations suggests an innovative structural model for the pendrin (SLC26A4) transmembrane domain. Biochimie. 2017; Jan;132: 109-120. doi: 10.1016/j.biochi.2016.10.002.

27. Pasqualetto E., Aiello R., Gesiot L., et al. Structure of the cytosolic portion of the motor protein prestin and functional role of the STAS domain in SLC26/SulP anion transporters. J Mol Biol. 2010; 400(3): 448-462. doi: 10.1016/j.jmb.2010.05.013.

28. Tsai H.H., Tsai C.J., Ma B., Nussinov R. In silico protein design by combinatorial assembly of protein building blocks. Protein Sci. 2004; 13(10): 2753-2765. doi:10.1110/ps.04774004.

29. Bordogna A., Pandini A., Bonati L. Predicting the accuracy of protein-ligand docking on homology models. J Comput Chem. 2011; 32(1): 81-98. doi:10.1002/jcc.21601.

30. Ng D.P., Poulsen B.E., Deber C.M. Membrane protein misassembly in disease. Biochimica et Biophysica Acta (BBA)-Biomembranes 2012; 1818(4): 1115-22. doi: 10.1016/j.bbamem.2011.07.046.

31. Detro-Dassen S., Schänzler M., Lauks H., et al. Conserved dimeric subunit stoichiometry of SLC26 multifunctional anion exchangers. J Biol Chem. 2008; 283(7): 4177-4188. doi: 10.1074/jbc.M704924200.

32. Farrell B., Skidmore B.L., Rajasekharan V., Brownell W.E. A novel theoretical framework reveals more than one voltage-sensing pathway in the lateral membrane of outer hair cells. J Biol Chem. 2020; 152(7):e201912447. doi: 10.1085/jgp.201912447.

33. Fu C., Zheng H., Zhang S., et al. Mutation screening of the SLC26A4 gene in a cohort of 192 Chinese patients with congenital hypothyroidism. Arch Endocrinol Metab. 2016 Aug; 60(4): 323-7. doi: 10.1590/2359-3997000000108.

34. Park H.J., Lee S.J., Jin H.S., et al. Genetic basis of hearing loss associated with enlarged vestibular aqueducts in Koreans. Clin Genet. 2005; 67(2):160-165. https://doi.org/10.1111/j.1399-0004.2004.00386.x

35. Tsukamoto K., Suzuki H., Harada D., et al. Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: a unique spectrum of mutations in Japanese. Eur J Hum Genet. 2003 Dec; 11(12): 916-22. doi: 10.1038/sj.ejhg.5201073.

36. Yoon J.S., Park H-J., Yoo S-Y., et al. Heterogeneity in the processing defect of SLC26A4 mutants. J Med Genet. 2008 Jul; 45(7): 411-9. doi: 10.1136/jmg.2007.054635.

37. Ishihara K., Okuyama S., Kumano S., et al. Salicylate restores transport function and anion exchanger activity of missense pendrin mutations. Hear Res. 2010 Dec 1; 270(1-2): 110-8. doi: 10.1016/j.heares.2010.08.015.

38. Huang S., Han D., Yuan Y., et al. Extremely discrepant mutation spectrum of SLC26A4 between Chinese patients with isolated Mondini deformity and enlarged vestibular aqueduct. J Transl Med. 2011 Sep 30; 9: 167. doi: 10.1186/1479-5876-9-167.

39. Albert S., Blons H., Jonard L., et al. SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. Eur J Hum Genet. 2006 Jun; 14(6): 773-9. doi: 10.1038/sj.ejhg.5201611.

40. Rebeh I.B., Yoshimi N., Hadj-Kacem H., et al. Two missense mutations in SLC26A4 gene: a molecular and functional study. Clin Genet. 2010 Jul; 78(1): 74-80. doi: 10.1111/j.1399-0004.2009.01360.x.

41. Wasano K., Takahashi S., Rosenberg S.K., et al. Systematic quantification of the anion transport function of pendrin (SLC26A4) and its disease-associated variants. Hum Mutat. 2020 Jan; 41(1): 316-331. doi: 10.1002/humu.23930.


Рецензия

Для цитирования:


Пшенникова В.Г., Романов Г.П., Кларов Л.А., Барашков Н.А. In silico оценка возможного патогенетического влияния миссенс варианта c.441G>A p.(Met147Ile) гена SLC26A4 на функцию/структуру белка пендрина с применением нейросетевого алгоритма AlfhаFold. Медицинская генетика. 2022;21(6):37-48. https://doi.org/10.25557/2073-7998.2022.06.37-48

For citation:


Pshennikova V.G., Romanov G.P., Klarov L.A., Barashkov N.A. In silico assessment of the possible pathogenetic effect of the missense variant c.441G>A p.(Met147Ile) of the SLC26A4 gene on the function/structure of the pendrin protein using the AlfhаFold neural network algorithm. Medical Genetics. 2022;21(6):37-48. (In Russ.) https://doi.org/10.25557/2073-7998.2022.06.37-48

Просмотров: 301


ISSN 2073-7998 (Print)