Preview

Medical Genetics

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Clinical significance of molecular genetic approaches based on NGS technologies in a sample of patients with primary ciliary dyskinesia

https://doi.org/10.25557/2073-7998.2022.10.38-42

Abstract

Primary ciliary dyskinesia (PCD) is a rare and poorly studied disease, the phenotype of which is found with some common residual respiratory tracts that are difficult to diagnose. Thus, NGS techniques are becoming crucial in the diagnosis of this disease. At least 46 genes encoding various parts of the ultrastructure of the respiratory tract epithelial cilia and similar structures are involved in the pathogenesis of primary ciliary dyskinesia (PCD). Our research is aimed at finding the genetic cause of the disease and improving diagnostic efficiency in a group of patients with PCD. Bioinformatic analysis of whole exome sequencing data was performed for 19 probands from unrelated families under the age of 18 with a clinically established diagnosis of PCD. According to the data obtained, 14 (74%) of the 19 probands had genetic variants in the genes responsible for the formation of the PCD phenotype. Thus, an application of the complex approaches including methods of clinical genetics and molecular biology can improve the primary ciliary dyskinesia diagnostic efficiency.

About the Authors

G. M. Radzhabova
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation


A. V. Smirnova
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation


A. A. Knyazeva
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation


A. A. Novak
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation


Yu. L. Mizernitsky
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation


N. V. Shcherbakova
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation


D. S. Tsibulskaya
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation


I. S. Povolotskaya
Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
Russian Federation


References

1. Hildebrandt F., Benzing T., Ciliopathies. N Engl J Med. 2011;364(16):1533- 1543. doi: 10.1056/NEJMra1010172.

2. Богорад А.Е., Дьякова С.Э., Мизерницкий Ю.Л. Первичная цилиарная дискинезия: современные подходы к диагностике и терапии. Российский вестник перинатологии и педиатрии. 2019;64:(5):123-133. doi: 10.21508/1027-4065-2019-64-5-123-133.

3. Новак А.А., Мизерницкий Ю.Л. Первичная цилиарная дискинезия: состояние проблемы и перспективы. Медицинский совет. 2021;(1):276-285. doi: 10.21518/2079-701X-2021-1-276-285.

4. Ferkol T., Leigh M. Primary ciliary dyskinesia and newborn respiratory distress. Semin Perinatol. 2006;30(6):335-340. doi: 10.1053/j.semperi. 2005.11.001.

5. Mullowney T., Manson D., Kim R., Stephens D., Shah V., Dell S. Primary ciliary dyskinesia and neonatal respiratory distress. Pediatrics. 2014;134(6):1160-1166. doi: 10.1542/peds.2014-0808.

6. Lucas J.S., Barbato A., Collins S.A., Goutaki M., Behan L., Caudri D. et al. European respiratory society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J. 2017;49(1):1601090. doi: 10.1183/13993003.01090-2016.

7. Sturgess J.M., Turner J.A. Ultrastructural pathology of cilia in the immotile cilia syndrome. Perspect Pediatr Pathol. 1984;8(2):133-161.

8. O’Callaghan C., Rutman A., Williams G.M., Hirst R.A. Inner dynein arm defects causing primary ciliary dyskinesia: repeat testing required. Eur Respir J. 2011;38(3):603-607. doi: 10.1183/09031936.00108410.

9. Fliegauf M., Olbrich H., Horvath J., Wildhaber J.H., Zariwala M., Kennedy M. et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med. 2005;171(12):1343-1949. doi: 10.1164/rccm.200411-1583OC.

10. Brennan S.K., Ferkol T.W., Davis S.D. Emerging Genotype-Phenotype Relationships in Primary Ciliary Dyskinesia.Int J Mol Sci. 2021 Jul 31;22(15):8272.

11. Leigh M.W. Hazucha M.J. Chawla K.K. Baker B.R. Shapiro A.J. Brown D.E. et al. Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia. Ann Am Thorac Soc. 2013; 10: 574-581

12. Wheway G., Thomas N.S., Carroll M., et al. Whole genome sequencing in the diagnosis of primary ciliary dyskinesia. BMC Med Genomics. 2021 Sep 23;14(1):234.

13. Green R.C., Berg J.S., Grody W.W., Kalia S.S., Korf B.R., Martin C.L., McGuire A.L., Nussbaum R.L., O’Daniel J.M., Ormond K.E., Rehm H.L., Watson M.S., Williams M.S., Biesecker L.G.; American College of Medical Genetics and Genomics. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013 Jul;15(7):565-74. doi: 10.1038/gim.2013.73.


Review

For citations:


Radzhabova G.M., Smirnova A.V., Knyazeva A.A., Novak A.A., Mizernitsky Yu.L., Shcherbakova N.V., Tsibulskaya D.S., Povolotskaya I.S. Clinical significance of molecular genetic approaches based on NGS technologies in a sample of patients with primary ciliary dyskinesia. Medical Genetics. 2022;21(10):38-42. (In Russ.) https://doi.org/10.25557/2073-7998.2022.10.38-42

Views: 367


ISSN 2073-7998 (Print)