Preview

Медицинская генетика

Расширенный поиск

Современные представления о генетике остеоартроза

Полный текст:

Аннотация

В представленном обзоре отражены современные достижения в исследовании генетики остеоартроза - широко распространенного прогрессирующего заболевания суставов неизвестной этиологии, характеризующегося поражением всех компонентов сустава и приводящего к затруднению движения, снижению качества жизни и инвалидизации больных. Рассматриваются ключевые вопросы молекулярного патогенеза заболевания, включая генетические и эпигенетические аспекты, а также существующие проблемы в данной области исследований.

Об авторах

Д. А. Шаповалова
Институт биохимии и генетики Уфимского научного центра Российской академии наук
Россия


А. В. Тюрин
Институт биохимии и генетики Уфимского научного центра Российской академии наук
Россия


Э. К. Хуснутдинова
Институт биохимии и генетики Уфимского научного центра Российской академии наук
Россия


Р. И. Хусаинова
Институт биохимии и генетики Уфимского научного центра Российской академии наук
Россия


Список литературы

1. Loeser RF, Steven RG, Carla RS, Goldring MB. Osteoarthritis: A Disease of the Joint as an Organ. Arthritis Rheum. 2012 Mar;64(6): 1697-1707.

2. Bomer N, den Hollander W, Ramos YF, Meulenbelt I. Translating genomics into mechanisms of disease: Osteoarthritis. Best Practice & Research Clinical Rheumatology Musculoskeletal Science. 2015 Dec;29(6):683-691.

3. Котельников ГП, Ларцев ЮВ. Остеоартроз: руководство. Травматология и ортопедия ревматология. Научно-практическое издание. 2009; (1):208.

4. Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014 Jul; 73(7):1323-1330.

5. Алексеева ЛИ. Факторы риска при остеоартрозе. Научно практическая ревматология. 2000;(2):36-45.

6. Kraus VB, Jordan JM, Doherty M, et al. The genetics of generalized osteoarthritis (GOGO) study: study design and evaluation of osteoarthritis phenotypes. Osteoarthritis Cartilage. 2007 Feb;15(2):120-127.

7. Jones SW, Watkins G, Le Good N, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis and Cartilage, 2009 Apr;17(4):464-472.

8. Tsezou A. Osteoarthritis Year in Review 2014: genetics and genomics. Osteoarthritis Cartilage. 2014 Dec; 22(12):2017-2024.

9. Haseeb А, Haqqi ТМ. Immunopathogenesis of Osteoarthritis. Clin Immunol. 2013 Mar; 146(3):185-196.

10. Valdes AM, Spector TD. Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol. 2011 Jan;7(1):23-32.

11. Reynard LN. Analysis of genetics and DNA methylation in osteoarthritis: What have we learnt about the disease? Semin Cell Dev Biol. 2016 Apr 26; (16)30121-5.

12. Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther. 2009 May; 11(3): 227.

13. Zhai G, van Meurs JB, Livshits G, et al. A genome-wide association study suggests that a locus within the ataxin 2 binding protein 1 gene is associated with hand osteoarthritis: the Treat-OA consortium. Journal of Medical Genetics. 2009 Sep; 46(9):614-616.

14. Panoutsopoulou K., Southam L, Elliott KS, et al. Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study. Ann Rheum Dis. 2011 May;70(5):864-867.

15. Тюрин АВ, Хусаинова РИ, Давлетшин РА, Хуснутдтнова Э.К. Современные представления о патогенезе и генетике остеоартрита. Медицинская генетика. 2013;(129):3-10.

16. Evangelou E, Kerkhof HJ, Styrkarsdottir U, et al. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Ann Rheum Dis. 2014 Dec; 73(12): 2130-2136.

17. Panoutsopoulou K, Zeggini E. Advances in osteoarthritis genetics. J Med Genet. 2013 Nov; 50(11): 715-724.

18. Day-Williams AG, Southam L, Panoutsopoulou K, et al. A variant in MCF2L is associated with osteoarthritis. Am J Hum Genet. 2011 Sep; 89(3):446-50.

19. Evangelou E, Valdes AM, Kerkhof HJ, et al. Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22. Ann Rheum Dis, 2011 Feb; 70(2): 349-355.

20. Kerkhof HJ, Lories RJ, Meulenbelt I, et al. A genome-wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22. Arthritis Rheum, 2010 Feb; 62(2): 499-510.

21. Miyamoto Y, Mabuchi A, Shi D, et al. A functional polymorphism in the 5’ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet. 2007 Apr;39(4):529-33.

22. Valdes AM., Evangelou E, Kerkhof HJ, et al. The GDF5 rs143383 polymorphism is associated with osteoarthritis of the knee with genome-wide statistical significance. Ann Rheum Dis. 2011 May; 70(5):873-875.

23. Miyamoto Y, Shi D, Nakajima M, et al. Common variants in DVWA on chromosome 3p24.3 are associated with susceptibility to knee osteoarthritis. Nat Genet. 2008 Aug;40(8):994-998.

24. Nakajima M, Takahashi A, Kou I, et al. New sequence variants in HLA class II/III region associated with susceptibility to knee osteoarthritis identified by genome-wide association study. PLoS One. 2010 Mar; 5(3): 9723.

25. Zeggini E, Panoutsopoulou K, Southam L, et al. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet. 2012 Sep; 380(9844):815-823.

26. Castano Betancourt MC, Cailotto F, Kerkhof HJ, et al. Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc Natl Acad Sci U S A.2012 May;109(21): 8218-23.

27. Evangelou E, Valdes AM, Castano-Betancourt MC, et al. The DOT1L rs12982744 polymorphism is associated with osteoarthritis of the hip with genome-wide statistical significance in males. Ann Rheum Dis. 2013 Jul;72(7):1264-1265.

28. Meulenbelt I, Min JL, Bos S, et al. Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis. Hum Mol Genet. 2008 Jun;17(12):1867-1875.

29. Castano Betancourt M, Evans D, Liu Y, et al. Novel variants for cartilage thickness and hip osteoarthritis: revealing genes implicated in cartilage and bone development. Osteoarthritis and Cartilage. 2014 Apr;22(62):41.

30. Yerges-Armstrong LM, Yau MS, Liu Y, et al. Association analysis of BMD-associated SNPs with knee osteoarthritis. J Bone Min Res, 2014 Jun;29(6):1373-1379.

31. Rodriguez-Fontenla C, Calaza M, Evangelou E, et al. Assessment of osteoarthritis candidate genes in a meta-analysis of nine genome-wide association studies. Arthritis Rheumatol. 2014 Apr; 66 (4): 940-949.

32. Song GG, Kim JH, Lee YH. A meta-analysis of the relationship between aspartic acid (D)-repeat polymorphisms in asporin and osteoarthritis susceptibility. Rheumatol Int, 2014 Jun;34(6): 785-792.

33. Liu H, He H, Li S, et al. Vitamin D receptor gene polymorphisms and risk of osteoarthritis: a meta-analysis. Exp Biol Med (Maywood). 2014 May;239(5):559-567.

34. Zhu ZH, Jin XZ, Zhang W, et al. Associations between vitamin D receptor gene polymorphisms and osteoarthritis: an updated meta-analysis. Rheumatology (Oxford), 2014 Jun;53(6): 998-1008.

35. Ruedel A, Stark K, Kaufmann S, et al. N-cadherin promoter polymorphisms and risk of osteoarthritis. FASEB J, 2014 Feb; 28(2):683-691.

36. Claessen KM, Kloppenburg M, Kroon HM, et al. Relationship between the functional exon 3 deleted growth hormone receptor polymorphism and symptomatic osteoarthritis in women. Ann Rheum Dis, 2014 Feb;73(2):433-436.

37. Vidal-Bralo L, Rodriguez-Fontela C, Calaza M, et al. New functional microsatellite associated with osteoarthritis susceptibility. Osteoarthritis and Cartilage. 2014 Apr;22(413):232-233.

38. Boer CG, Rooij van J, Peters MJ, Meurs van J. Discovery and analysis of rare coding variants for hip OA by exome-sequencing. Osteoarthritis and Cartilage. 2014 Apr;22(404)226-227.

39. Holroyd C, Harvey N, Dennison E, Cooper C. Epigenetic influences in the developmental origins of osteoporosis. Osteoporos Int. 2012 Feb; 23(2):401-10.

40. Bird A. Perceptions of epigenetics. Nature. 2007 May 24; 447(7143):396-398.

41. Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trends Genet. 2015 May;31(5):274-280.

42. Maunakea AK, Nagarajan RP, Bilenky M, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010 Jul 8;466(7303):253-257.

43. Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 2014 Nov;15(11):703-708.

44. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 2014 Jan;15(1): 7-21.

45. Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 2015 Jul;16(7): 421-433.

46. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function Cell. 2004 Jan 23; 116(2):281-297.

47. Kobayashi T, Lu J, Cobb BS, et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc. Natl. Acad. Sci. U. S. A. 2008 Feb;105(6):1949-1954.

48. Mirzamohammadi F, Papaioannou G, Kobayashi T. MicroRNAs in cartilage development, homeostasis, and disease. Curr. Osteoporos. 2014 Dec;12(4): 410-419.

49. Nugent M. MicroRNAs: exploring new horizons in osteoarthritis. Osteoarthritis Cartilage. 2016 Apr; 24(4):573-80.

50. Le LT, Swingler TE, Clark IM. Review: the role of microRNAs in osteoarthritis and chondrogenesis. Arthritis Rheum. 2013 Aug;65(8):1963-1974.

51. Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One. 2008 Nov; 3(11):3740.

52. Jones SW, Watkins G, Le Good N, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis and Cartilage. 2009 Apr;17(4):464-472.

53. Dнaz-Prado S, Cicione C, Muinos-Lopez E, et al. Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord. 2012 Aug; (13):1-14.

54. Miyaki S, Nakasa T, Otsuki S, et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 2009 Sep; 60(9): 2723-2730.

55. Nakamura Y, Inloes JB, Katagiri T, Kobayashi T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol. 2011 Jul; 31(14): 3019-3028.

56. Liang ZJ, Zhuang H, Wang GX, el al. MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1beta-stimulated human articular chondrocyte C28/I2 cells. Inflamm Res. 2012 May;61(5):503-509.

57. Akhtar N, Rasheed Z, Ramamurthy S, et al. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 2010 May;62(5):1361-1371.

58. Li J, Huang J, Dai L, et al. miR-146a, an IL-1beta responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res Ther. 2012 Apr;14(2):1-13.

59. Wang JH, Shih KS, Wu YW, et al. Histone deacetylase inhibitors increase microRNA-146a expression and enhance negative regulation of interleukin-1beta signaling in osteoarthritis fibroblast-like synoviocytes. Osteoarthritis and Cartilage. 2013 Dec;21(12):1987-1996.

60. Matsukawa T, Sakai T, Yonezawa T, et al. MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes. Arthritis Res Ther. 2013 Feb;15(1):1-11.

61. Park SJ, Cheon EJ, Kim HA. MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1b-induced catabolic effects in human articular chondrocytes. Osteoarthritis and Cartilage. 2013 Jul;21(7):981-989.

62. Park SJ, Cheon EJ, Lee MH, Kim HA. MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1beta-induced catabolic effects in human chondrocytes. Arthritis Rheum. 2013 Dec;65(12): 3141-3152.

63. Vonk LA, Kragten AH, Dhert WJ, et al. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes. Osteoarthritis and Cartilage, 2014 Jan;22(1): 145-53.

64. Zhang Y, Jia J, Yang S, et al. MicroRNA-21 controls the development of osteoarthritis by targeting GDF-5 in chondrocytes. Exp Mol Med. 2014 Feb;28(46):79.

65. Le L, Swingler TE, Crowe N, et al. The microRNA-29 family in osteoarthritis. Osteoarthritis and Cartilage. 2014 Apr; 22(64):41-42.

66. Beyer C, Zampetaki A, Lin NY, et al. Signature of circulating microRNAs in osteoarthritis. Ann Rheum Dis. 2015 Mar;74(3):18.

67. Delgado-Calle J, Fernandez AF, Sainz J, et al. Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum. 2013 Jan;65(1):197-205.

68. Cheung KS, Hashimoto K, Yamada N, Roach HI. Expression of ADAMTS-4 by chondrocytes in the surface zone of human osteoarthritic cartilage is regulated by epigenetic DNA de-methylation. Rheumatol Int. 2009 Mar;29(5):525-534.

69. da Silva MA, Yamada N, Clarke NM, Roach HI. Cellular and epigenetic features of a young healthy and a young osteoarthritic cartilage compared with aged control and OA cartilage. J Orthop Res.2009 May;27(5):593-601.

70. de Andres MC, Imagawa K, Hashimoto K, et al. Loss of methylation in CpG sites in the NF-kappaB enhancer elements of inducible nitric oxide synthase is responsible for gene induction in human articular chondrocytes. Arthritis Rheum. 2013 Mar;65(3):732-742.

71. Hashimoto K, Otero M, Imagawa K, et al. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem.2013 Apr;288(14):10061-72.

72. Bui C, Barter MJ, Scott JL, et al. cAMP response element-binding (CREB) recruitment following a specific CpG demethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. FASEB J. 2012 Jul;26(7):3000-11.

73. Scott JL, Gabrielides C, Davidson RK, et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis. 2010 Aug;69(8):1502-10.

74. Fernandez-Tajes J, Soto-Hermida A, Vazquez-Mosquera ME, et al. Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann Rheum.2014 Apr;73(4):668-77.

75. Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science.2011 Sep;333(6047):1300-3.

76. Taylor SE, Smeriglio P, Dhulipala L, et al. A global increase in 5-hydroxymethylcytosine levels marks osteoarthritic chondrocytes. Arthritis Rheum.2014 Jan;66(1):90-100.

77. den Hollander W, Ramos YF, Bos SD, et al. Genome wide DNA methylation profiling of osteoarthritic articular cartilage. Osteoarthritis and Cartilage.2014 Apr;22(61):40-41.

78. Rushton MD, Reynard LN, Barter MJ, et al. Characterisation of the cartilage DNA methylome in knee and hip osteoarthritis using high-density genome-wide analysis. Arthritis Rheumatol. 2014 Sep;66(9):2450-60.


Рецензия

Для цитирования:


Шаповалова Д.А., Тюрин А.В., Хуснутдинова Э.К., Хусаинова Р.И. Современные представления о генетике остеоартроза. Медицинская генетика. 2017;16(2):3-10.

For citation:


Shapovalova D.A., Tyurin A.V., Khusnutdinova E.K., Khusainova R.I. Recent advances in genetics of osteoarthritis. Medical Genetics. 2017;16(2):3-10. (In Russ.)

Просмотров: 604


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7998 (Print)