Современные представления о генетике остеоартроза
Аннотация
Об авторах
Д. А. ШаповаловаРоссия
А. В. Тюрин
Россия
Э. К. Хуснутдинова
Россия
Р. И. Хусаинова
Россия
Список литературы
1. Loeser RF, Steven RG, Carla RS, Goldring MB. Osteoarthritis: A Disease of the Joint as an Organ. Arthritis Rheum. 2012 Mar;64(6): 1697-1707.
2. Bomer N, den Hollander W, Ramos YF, Meulenbelt I. Translating genomics into mechanisms of disease: Osteoarthritis. Best Practice & Research Clinical Rheumatology Musculoskeletal Science. 2015 Dec;29(6):683-691.
3. Котельников ГП, Ларцев ЮВ. Остеоартроз: руководство. Травматология и ортопедия ревматология. Научно-практическое издание. 2009; (1):208.
4. Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014 Jul; 73(7):1323-1330.
5. Алексеева ЛИ. Факторы риска при остеоартрозе. Научно практическая ревматология. 2000;(2):36-45.
6. Kraus VB, Jordan JM, Doherty M, et al. The genetics of generalized osteoarthritis (GOGO) study: study design and evaluation of osteoarthritis phenotypes. Osteoarthritis Cartilage. 2007 Feb;15(2):120-127.
7. Jones SW, Watkins G, Le Good N, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis and Cartilage, 2009 Apr;17(4):464-472.
8. Tsezou A. Osteoarthritis Year in Review 2014: genetics and genomics. Osteoarthritis Cartilage. 2014 Dec; 22(12):2017-2024.
9. Haseeb А, Haqqi ТМ. Immunopathogenesis of Osteoarthritis. Clin Immunol. 2013 Mar; 146(3):185-196.
10. Valdes AM, Spector TD. Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol. 2011 Jan;7(1):23-32.
11. Reynard LN. Analysis of genetics and DNA methylation in osteoarthritis: What have we learnt about the disease? Semin Cell Dev Biol. 2016 Apr 26; (16)30121-5.
12. Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther. 2009 May; 11(3): 227.
13. Zhai G, van Meurs JB, Livshits G, et al. A genome-wide association study suggests that a locus within the ataxin 2 binding protein 1 gene is associated with hand osteoarthritis: the Treat-OA consortium. Journal of Medical Genetics. 2009 Sep; 46(9):614-616.
14. Panoutsopoulou K., Southam L, Elliott KS, et al. Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study. Ann Rheum Dis. 2011 May;70(5):864-867.
15. Тюрин АВ, Хусаинова РИ, Давлетшин РА, Хуснутдтнова Э.К. Современные представления о патогенезе и генетике остеоартрита. Медицинская генетика. 2013;(129):3-10.
16. Evangelou E, Kerkhof HJ, Styrkarsdottir U, et al. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Ann Rheum Dis. 2014 Dec; 73(12): 2130-2136.
17. Panoutsopoulou K, Zeggini E. Advances in osteoarthritis genetics. J Med Genet. 2013 Nov; 50(11): 715-724.
18. Day-Williams AG, Southam L, Panoutsopoulou K, et al. A variant in MCF2L is associated with osteoarthritis. Am J Hum Genet. 2011 Sep; 89(3):446-50.
19. Evangelou E, Valdes AM, Kerkhof HJ, et al. Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22. Ann Rheum Dis, 2011 Feb; 70(2): 349-355.
20. Kerkhof HJ, Lories RJ, Meulenbelt I, et al. A genome-wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22. Arthritis Rheum, 2010 Feb; 62(2): 499-510.
21. Miyamoto Y, Mabuchi A, Shi D, et al. A functional polymorphism in the 5’ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet. 2007 Apr;39(4):529-33.
22. Valdes AM., Evangelou E, Kerkhof HJ, et al. The GDF5 rs143383 polymorphism is associated with osteoarthritis of the knee with genome-wide statistical significance. Ann Rheum Dis. 2011 May; 70(5):873-875.
23. Miyamoto Y, Shi D, Nakajima M, et al. Common variants in DVWA on chromosome 3p24.3 are associated with susceptibility to knee osteoarthritis. Nat Genet. 2008 Aug;40(8):994-998.
24. Nakajima M, Takahashi A, Kou I, et al. New sequence variants in HLA class II/III region associated with susceptibility to knee osteoarthritis identified by genome-wide association study. PLoS One. 2010 Mar; 5(3): 9723.
25. Zeggini E, Panoutsopoulou K, Southam L, et al. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet. 2012 Sep; 380(9844):815-823.
26. Castano Betancourt MC, Cailotto F, Kerkhof HJ, et al. Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc Natl Acad Sci U S A.2012 May;109(21): 8218-23.
27. Evangelou E, Valdes AM, Castano-Betancourt MC, et al. The DOT1L rs12982744 polymorphism is associated with osteoarthritis of the hip with genome-wide statistical significance in males. Ann Rheum Dis. 2013 Jul;72(7):1264-1265.
28. Meulenbelt I, Min JL, Bos S, et al. Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis. Hum Mol Genet. 2008 Jun;17(12):1867-1875.
29. Castano Betancourt M, Evans D, Liu Y, et al. Novel variants for cartilage thickness and hip osteoarthritis: revealing genes implicated in cartilage and bone development. Osteoarthritis and Cartilage. 2014 Apr;22(62):41.
30. Yerges-Armstrong LM, Yau MS, Liu Y, et al. Association analysis of BMD-associated SNPs with knee osteoarthritis. J Bone Min Res, 2014 Jun;29(6):1373-1379.
31. Rodriguez-Fontenla C, Calaza M, Evangelou E, et al. Assessment of osteoarthritis candidate genes in a meta-analysis of nine genome-wide association studies. Arthritis Rheumatol. 2014 Apr; 66 (4): 940-949.
32. Song GG, Kim JH, Lee YH. A meta-analysis of the relationship between aspartic acid (D)-repeat polymorphisms in asporin and osteoarthritis susceptibility. Rheumatol Int, 2014 Jun;34(6): 785-792.
33. Liu H, He H, Li S, et al. Vitamin D receptor gene polymorphisms and risk of osteoarthritis: a meta-analysis. Exp Biol Med (Maywood). 2014 May;239(5):559-567.
34. Zhu ZH, Jin XZ, Zhang W, et al. Associations between vitamin D receptor gene polymorphisms and osteoarthritis: an updated meta-analysis. Rheumatology (Oxford), 2014 Jun;53(6): 998-1008.
35. Ruedel A, Stark K, Kaufmann S, et al. N-cadherin promoter polymorphisms and risk of osteoarthritis. FASEB J, 2014 Feb; 28(2):683-691.
36. Claessen KM, Kloppenburg M, Kroon HM, et al. Relationship between the functional exon 3 deleted growth hormone receptor polymorphism and symptomatic osteoarthritis in women. Ann Rheum Dis, 2014 Feb;73(2):433-436.
37. Vidal-Bralo L, Rodriguez-Fontela C, Calaza M, et al. New functional microsatellite associated with osteoarthritis susceptibility. Osteoarthritis and Cartilage. 2014 Apr;22(413):232-233.
38. Boer CG, Rooij van J, Peters MJ, Meurs van J. Discovery and analysis of rare coding variants for hip OA by exome-sequencing. Osteoarthritis and Cartilage. 2014 Apr;22(404)226-227.
39. Holroyd C, Harvey N, Dennison E, Cooper C. Epigenetic influences in the developmental origins of osteoporosis. Osteoporos Int. 2012 Feb; 23(2):401-10.
40. Bird A. Perceptions of epigenetics. Nature. 2007 May 24; 447(7143):396-398.
41. Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trends Genet. 2015 May;31(5):274-280.
42. Maunakea AK, Nagarajan RP, Bilenky M, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010 Jul 8;466(7303):253-257.
43. Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 2014 Nov;15(11):703-708.
44. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 2014 Jan;15(1): 7-21.
45. Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 2015 Jul;16(7): 421-433.
46. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function Cell. 2004 Jan 23; 116(2):281-297.
47. Kobayashi T, Lu J, Cobb BS, et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc. Natl. Acad. Sci. U. S. A. 2008 Feb;105(6):1949-1954.
48. Mirzamohammadi F, Papaioannou G, Kobayashi T. MicroRNAs in cartilage development, homeostasis, and disease. Curr. Osteoporos. 2014 Dec;12(4): 410-419.
49. Nugent M. MicroRNAs: exploring new horizons in osteoarthritis. Osteoarthritis Cartilage. 2016 Apr; 24(4):573-80.
50. Le LT, Swingler TE, Clark IM. Review: the role of microRNAs in osteoarthritis and chondrogenesis. Arthritis Rheum. 2013 Aug;65(8):1963-1974.
51. Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One. 2008 Nov; 3(11):3740.
52. Jones SW, Watkins G, Le Good N, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis and Cartilage. 2009 Apr;17(4):464-472.
53. Dнaz-Prado S, Cicione C, Muinos-Lopez E, et al. Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord. 2012 Aug; (13):1-14.
54. Miyaki S, Nakasa T, Otsuki S, et al. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 2009 Sep; 60(9): 2723-2730.
55. Nakamura Y, Inloes JB, Katagiri T, Kobayashi T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol. 2011 Jul; 31(14): 3019-3028.
56. Liang ZJ, Zhuang H, Wang GX, el al. MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1beta-stimulated human articular chondrocyte C28/I2 cells. Inflamm Res. 2012 May;61(5):503-509.
57. Akhtar N, Rasheed Z, Ramamurthy S, et al. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 2010 May;62(5):1361-1371.
58. Li J, Huang J, Dai L, et al. miR-146a, an IL-1beta responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res Ther. 2012 Apr;14(2):1-13.
59. Wang JH, Shih KS, Wu YW, et al. Histone deacetylase inhibitors increase microRNA-146a expression and enhance negative regulation of interleukin-1beta signaling in osteoarthritis fibroblast-like synoviocytes. Osteoarthritis and Cartilage. 2013 Dec;21(12):1987-1996.
60. Matsukawa T, Sakai T, Yonezawa T, et al. MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes. Arthritis Res Ther. 2013 Feb;15(1):1-11.
61. Park SJ, Cheon EJ, Kim HA. MicroRNA-558 regulates the expression of cyclooxygenase-2 and IL-1b-induced catabolic effects in human articular chondrocytes. Osteoarthritis and Cartilage. 2013 Jul;21(7):981-989.
62. Park SJ, Cheon EJ, Lee MH, Kim HA. MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1beta-induced catabolic effects in human chondrocytes. Arthritis Rheum. 2013 Dec;65(12): 3141-3152.
63. Vonk LA, Kragten AH, Dhert WJ, et al. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes. Osteoarthritis and Cartilage, 2014 Jan;22(1): 145-53.
64. Zhang Y, Jia J, Yang S, et al. MicroRNA-21 controls the development of osteoarthritis by targeting GDF-5 in chondrocytes. Exp Mol Med. 2014 Feb;28(46):79.
65. Le L, Swingler TE, Crowe N, et al. The microRNA-29 family in osteoarthritis. Osteoarthritis and Cartilage. 2014 Apr; 22(64):41-42.
66. Beyer C, Zampetaki A, Lin NY, et al. Signature of circulating microRNAs in osteoarthritis. Ann Rheum Dis. 2015 Mar;74(3):18.
67. Delgado-Calle J, Fernandez AF, Sainz J, et al. Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum. 2013 Jan;65(1):197-205.
68. Cheung KS, Hashimoto K, Yamada N, Roach HI. Expression of ADAMTS-4 by chondrocytes in the surface zone of human osteoarthritic cartilage is regulated by epigenetic DNA de-methylation. Rheumatol Int. 2009 Mar;29(5):525-534.
69. da Silva MA, Yamada N, Clarke NM, Roach HI. Cellular and epigenetic features of a young healthy and a young osteoarthritic cartilage compared with aged control and OA cartilage. J Orthop Res.2009 May;27(5):593-601.
70. de Andres MC, Imagawa K, Hashimoto K, et al. Loss of methylation in CpG sites in the NF-kappaB enhancer elements of inducible nitric oxide synthase is responsible for gene induction in human articular chondrocytes. Arthritis Rheum. 2013 Mar;65(3):732-742.
71. Hashimoto K, Otero M, Imagawa K, et al. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem.2013 Apr;288(14):10061-72.
72. Bui C, Barter MJ, Scott JL, et al. cAMP response element-binding (CREB) recruitment following a specific CpG demethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. FASEB J. 2012 Jul;26(7):3000-11.
73. Scott JL, Gabrielides C, Davidson RK, et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis. 2010 Aug;69(8):1502-10.
74. Fernandez-Tajes J, Soto-Hermida A, Vazquez-Mosquera ME, et al. Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann Rheum.2014 Apr;73(4):668-77.
75. Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science.2011 Sep;333(6047):1300-3.
76. Taylor SE, Smeriglio P, Dhulipala L, et al. A global increase in 5-hydroxymethylcytosine levels marks osteoarthritic chondrocytes. Arthritis Rheum.2014 Jan;66(1):90-100.
77. den Hollander W, Ramos YF, Bos SD, et al. Genome wide DNA methylation profiling of osteoarthritic articular cartilage. Osteoarthritis and Cartilage.2014 Apr;22(61):40-41.
78. Rushton MD, Reynard LN, Barter MJ, et al. Characterisation of the cartilage DNA methylome in knee and hip osteoarthritis using high-density genome-wide analysis. Arthritis Rheumatol. 2014 Sep;66(9):2450-60.
Рецензия
Для цитирования:
Шаповалова Д.А., Тюрин А.В., Хуснутдинова Э.К., Хусаинова Р.И. Современные представления о генетике остеоартроза. Медицинская генетика. 2017;16(2):3-10.
For citation:
Shapovalova D.A., Tyurin A.V., Khusnutdinova E.K., Khusainova R.I. Recent advances in genetics of osteoarthritis. Medical Genetics. 2017;16(2):3-10. (In Russ.)